[1] 徐路遥,李蓓智,杨建国. 考虑硬度的高弹性合金钢3J33微细特征磨削仿真分析及试验研究[J]. 中国机械工程,2019,30(1):17-21.XU Luyao,LI Beizhi,YANG Jianguo. Simulaton analysis and experimental validation of micro-feature grinding for high-elastic alloy steel 3J33 with considering hardness[J]. China Mechanical Engineering,2019,30(1):17-21. [2] LU X,JIA Z,YANG K,et al. Analytical model of work hardening and simulation of the distribution of hardening in micro-milled nickel-based superalloy[J]. International Journal of Advanced Manufacturing Technology,2018,97(9-12):3915-3923. [3] LU X,HU X,JIA Z,et al. Model for the prediction of 3D surface topography and surface roughness in micro-milling Inconel 718[J]. International Journal of Advanced Manufacturing Technology,2018,94(5-8):2043-2056. [4] FENG Y,HUNG T P,LU Y T,et al. Inverse analysis of inconel 718 laser-assisted milling to achieve machined surface roughness[J]. International Journal of Precision Engineering and Manufacturing,2018,19(11):1611-1618. [5] 张浩,刘玉德,石文天,等. 微细切削加工表面质量的研究综述[J]. 表面技术,2017,46(7):219-232.ZHANG Hao,LIU Yude,SHI Wentian,et al. Quality of micro machined surface[J]. Surface Technology,2017,46(7):219-232. [6] SETTI D,KIRSCH B,AURICH J C. An Analytical method for prediction of material deformation behavior in grinding using single grit analogy[J]. Procedia CIRP,2017,58:263-268. [7] 李伟,周志雄,尹韶辉,等. 微细磨削技术及微磨床设备研究现状分析与探讨[J]. 机械工程学报,2016,52(17):10-19.LI Wei,ZHOU Zhixiong,YIN Shaohui,et al. Research status analysis and review of micro-grinding technology and micro-grinding machines[J]. Journal of Mechanical Engineering,2016,52(17):10-19. [8] PARK H W,LIANG S Y. Force modeling of micro-grinding incorporating crystallographic effects[J]. International Journal of Machine Tools and Manufacture,2008,48(15):1658-1667. [9] YIN J,BAI Q,HAITJEMA H,et al. Two-dimensional detection of subsurface damage in silicon wafers with polarized laser scattering[J]. Journal of Materials Processing Technology,2020,284:116746. [10] ZHANG B,YIN J. The ‘skin effect’ of subsurface damage distribution in materials subjected to high-speed machining[J]. International Journal of Extreme Manufacturing,2019,1(1):012007. [11] YANG X,ZHANG B. Material embrittlement in high strain-rate loading[J]. International Journal of Extreme Manufacturing,2019,1(2):022003. [12] YIN J,BAI Q,LI Y,et al. Formation of subsurface cracks in silicon wafers by grinding[J]. Nanotechnology and Precision Engineering,2018,1(3):172-179. [13] VENKATACHALAM S,LI X,LIANG S Y. Predictive modeling of transition undeformed chip thickness in ductile-regime micro-machining of single crystal brittle materials[J]. Journal of Materials Processing Technology,2009,209(7):3306-3319. [14] HUANG Y,LIANG S Y. Force modelling in shallow cuts with large negative rake angle and large nose radius tools application to hard turning[J]. The International Journal of Advanced Manufacturing Technology,2003,22(9-10):626-632. [15] 温雪龙,巩亚东,程军,等. 铝合金Al6061微尺度磨削力热特性试验分析[J]. 机械工程学报,2014,50(23):165-174.WEN Xuelong,GONG Yadong,CHENG Jun,et al. Experimental research on force and temperature characteristics in micro-grinding Al6061[J]. Journal of Mechanical Engineering,2014,50(23):165-174. [16] 尹国强,巩亚东,温雪龙,等. 新型点磨削砂轮磨削力模型及试验研究[J]. 机械工程学报,2016,52(9):193-200.YIN Guoqiang,GONG Yadong,WEN Xuelong,et al. Modeling and experimental investigations on point grinding force for novel point grinding wheel[J]. Journal of Mechanical Engineering,2016,52(9):193-200. [17] HUGHES G D,SMITH S D,PANDE C S. Hall-Petch strengtheninig for the microhardness of twelve nanometer grain diameter electrodeposited nickel[J]. Scripta Metallurgica,1986,20:93-97. [18] HUGHES D A,HANSEN N. Microstructure and strength of nickel at large strains[J]. Acta Materialia,2000,48(11):2985-3004. [19] HANSEN N. Polycrystalline strengthening[J]. Metall Trans A,1985,16(12):2167-2190. [20] VENKATACHALAM S,LI X,FERGANI O,et al. Crystallographic effects on microscale machining of polycrystalline brittle materials[J]. Journal of Micro and Nano-Manufacturing,2013,1(4):041001. [21] XU F,FANG F,ZHU Y,et al. Study on crystallographic orientation effect on surface generation of aluminum in nano-cutting[J]. Nanoscale Res Lett,2017,12(1):289. [22] UEDA K,IWATA K,NAKAYAMA K. Chip formation mechanism in single crystal cutting of β-brass[J]. CIRP Ann,1980,29(1):41-46. [23] SHIBATA T,FUJII S,MAKINO E,et al. Ductile-regime turning mechanism of single-crystal silicon[J]. Precision Engineering,1996,18(2-3):129-137. [24] WU X,LI L,HE N,et al. Investigation on the influence of material microstructure on cutting force and bur formation in the micro cutting of copper[J]. International Journal of Advanced Manufacturing Technology,2015,79(1-4):321-327. [25] SHARIF U M,SEAH K H W,LI X P,et al. Effect of crystallographic orientation on wear of diamond tools for nano-scale ductile cutting of silicon[J]. Wear,2004,257(7-8):751-759. [26] ZHAO M,JI X,LIANG S Y. Influence of AA7075 crystallographic orientation on micro-grinding force[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2018,233(8):1831-1843. [27] BLANCKENHAGEN B V,GUMBSCH P,ARZT E. Dislocation sources in discrete dislocation simulations of thin-film plasticity and the Hall-Petch relation[J]. Modell Simul Mater Sci Eng,2001,9(3):157. [28] JUSTINGER H,HIRT G. Estimation of grain size and grain orientation influence in microforming processes by Taylor factor considerations[J]. Journal of Materials Processing Technology,2009,209(4):2111-2121. [29] ZHAO M,JI X,LIANG S Y. Force prediction in micro-grinding maraging steel 3J33b considering the crystallographic orientation and phase transformation[J]. The International Journal of Advanced Manufacturing Technology,2019,103(5-8):2821-2836. [30] MERCHANT M E. Mechanics of the metal cutting process. II. plasticity conditions in orthogonal cutting[J]. Journal of Applied Physics,1945,16(6):318-324. [31] 李伯民,李清,赵波. 磨料、磨具与磨削技术[M]. 北京:机械工业出版社,2010. LI Bomin,LI Qing,ZHAO Bo. Abrasive,abrasive tool, and grinding technology[M]. Beijing:China Machine Press,2010. [32] YOUNIS M A,ALAWI H. Probabilistic Analysis of the Surface Grinding Process[J]. T. Can. Soc. Mech. Eng.,1984,8(4):208-213. [33] ROWE W B,MORGAN M N,QI H S,et al. The effect of deformation on the contact area in grinding[J]. CIRP,1993,42(1):409-412. [34] PARK H W,PARK Y B,LIANG S Y. Multi-procedure design optimization and analysis of mesoscale machine tools[J]. International Journal of Advanced Manufacturing Technology,2011,56(1-4):1-12. [35] 官春平. 圆柱与刚性平面Hertz接触的临界参数计算[J]. 轴承,2013(8):4-7.GUAN Chunping. Calculation of critical parameters for Hertz contact between cylinder and rigid plane[J]. Bearing,2013(8):4-7. [36] YANG F,ZHANG B,WANG J,et al. The effect of grinding machine stiffness on surface integrity of silicon nitride[J]. Journal of Manufacturing Science and Engineering,2000,123(4):591-600. [37] PARK H W. Development of micro-grinding mechanics and machine tools[D]. Atlanta:Georgia Institute of Technology,2008. [38] 虞粉英,陆锦辉. 数字信号处理中的对称性问题[J]. 南京理工大学学报,2018,42(5):615-621.YU Fenying,LU Jinhui. Symmetry in digital signal processing[J]. Journal of Nanjing University of Science and Technology,2018,42(5):615-621. |