• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (5): 166-176.doi: 10.3901/JME.2021.05.166

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

基于特征矩阵的大型舱体类构件毛坯模型复杂特征分层识别方法

段现银1, 余胜1,2, 彭芳瑜3, 郑妍4, 蒋国璋5, 向峰5   

  1. 1. 武汉科技大学机械传动与制造工程湖北省重点实验室 武汉 430081;
    2. 武汉开目信息技术股份有限公司 武汉 430070;
    3. 华中科技大学数字制造装备与技术国家重点实验室 武汉 430074;
    4. 华中科技大学无锡研究院 无锡 214174;
    5. 武汉科技大学冶金装备及其控制教育部重点实验室 武汉 430081
  • 收稿日期:2020-05-08 修回日期:2020-12-01 出版日期:2021-03-05 发布日期:2021-04-28
  • 通讯作者: 彭芳瑜(通信作者),男,1972年出生,博士,教授,博士研究生导师。主要研究方向为多轴数控加工、超精密加工、数控系统性能仿真、STEP-NC等。E-mail:pengfy@hust.edu.cn
  • 作者简介:段现银,男,1986年出生,博士,副教授,研究生导师。主要研究方向为数字化制造与智能制造、复杂曲面制造过程优化。E-mail:xyduan@wust.edu.cn;余胜,男,1994年出生。主要研究方向为加工特征识别与计算机辅助制造、基于数字图像处理的智能制造。E-mail:ysfree@163.com
  • 基金资助:
    国家杰出青年基金(51625502)、智能制造单元技术和武汉科技大学国防预研基金(GF201914)资助项目。

Feature Matrix Based Complex Feature Hierarchical Recognition for Blank Model of Large Cabin Component

DUAN Xianyin1, YU Sheng1,2, PENG Fangyu3, ZHENG Yan4, JIANG Guozhang5, XIANG Feng5   

  1. 1. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081;
    2. Wuhan Kaimu Information Technology Co., Ltd, Wuhan 430070;
    3. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074;
    4. Wuxi Research Institute, Huazhong University of Science and Technology, Wuxi 214174;
    5. Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081
  • Received:2020-05-08 Revised:2020-12-01 Online:2021-03-05 Published:2021-04-28

摘要: 大型舱体类构件是大飞机、火箭等航空航天飞行器型号的重要部件,具有众多复杂内部相交特征,给其内部特征的准确识别带来极大挑战,毛坯模型内部特征的有效识别是实现加工余量确定、切削参数优化及刀具路径规划的重要基础。提出了一种基于特征矩阵的大型复杂构件毛坯模型相交特征分层识别算法,实现基于毛坯模型几何拓扑信息的多层次复杂相交特征识别。首先使用阈值分割法识别和剔除大型复杂构件毛坯模型伪特征及其数据,进行毛坯模型优化。然后构建该优化毛坯模型的属性邻接图,采用分层识别方法对构件的优化毛坯模型相交特征进行分层处理,得到单一特征并计算其特征矩阵。将多类型单一特征均转换为特征矩阵,建立特征匹配库。最后将特征矩阵与特征库进行匹配,以进行模型相交特征准确识别。对具有多种特征的舱体零件毛坯模型进行实例验证,通过准确识别多类型特征分别验证了该算法的可行性和有效性。

关键词: 毛坯模型识别, 相交特征识别, 分层算法, 舱体零件, 特征矩阵, 伪特征

Abstract: Large cabin components are important parts of aerospace vehicles such as large aircrafts and rockets. They have many complex intersection features, which brings great challenges to the accurate identification of their internal features. The effective recognition of the internal characteristics of the blank model is foundation of the determination of machining allowance, optimization of cutting parameters and tool path planning. A hierarchical recognition algorithm for the intersection features of large and complex component blank models based on feature matrices is proposed, which realizes the multi-level complex intersection feature recognition based on the geometric topology information of the blank model. First, the threshold segmentation method is used to identify and eliminate the pseudo-features and data of the large and complex component blank model and optimize the blank model. Then, the attribute adjacency graph of the optimized blank model is constructed, and the intersection features of the optimized blank model are processed in layers by using the hierarchical recognition method to obtain a single feature and calculate its feature matrix. Multi-type single features are converted into feature matrices, and feature matching libraries are established. Finally, the feature matrix is matched with the feature library to accurately identify the intersection features. The blank model of cabin parts with multiple features is verified by cases, and the feasibility and effectiveness of the algorithm are verified by accurately identifying multiple types of features.

Key words: blank model recognition, intersection feature recognition, hierarchical algorithm, cabin parts, feature matrix, pseudo-features

中图分类号: