• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (17): 71-81.doi: 10.3901/JME.2020.17.071

• 机器人及机构学 • 上一篇    下一篇

扫码分享

大行程三平动柔性微定位平台的设计分析及优化

曹毅1,2, 王保兴1, 孟刚1, 林苗1, 张洪1   

  1. 1. 江南大学机械工程学院 无锡 214122;
    2. 江南大学江苏省食品先进制造装备技术重点实验室 无锡 214122
  • 收稿日期:2019-10-06 修回日期:2020-01-14 出版日期:2020-09-05 发布日期:2020-10-19
  • 通讯作者: 曹毅(通信作者),男,1974年出生,博士,教授,硕士研究生导师。主要研究方向为机器人机构学。E-mail:caoyi@jiangnan.edu.cn
  • 基金资助:
    江苏省“六大人才高峰”计划(ZBZZ-012)、高等学校学科创新引智计划(B18027)和江苏省研究生创新计划(SJCX18-0630,KYCX18-1846)资助项目。

Design Analysis and Optimization of Large Range Spatial Translational Compliant Micro-positioning Stage

CAO Yi1,2, WANG Baoxing1, MENG Gang1, LIN Miao1, ZHANG Hong1   

  1. 1. School of Mechanical Engineering, Jiangnan University, Wuxi 214122;
    2. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122
  • Received:2019-10-06 Revised:2020-01-14 Online:2020-09-05 Published:2020-10-19

摘要: 为设计具有毫米级运动行程、良好的静、动态特性且结构多样的三维平动柔性微定位平台。首先,提出两种新型的多自由度大行程柔性运动副。其次,基于该运动副,给出三种新型大行程空间平动柔性微定位平台实例。然后,采用非线性方法建立平台力位移关系、输入耦合及丢失运动的理论模型,并采用柔度矩阵法建立平台的刚度及固有频率模型。随后,以提高平台的静、动态性能为目标对平台进行参数寻优。最后对平台进行有限元分析,验证理论模型的正确性。根据理论与仿真结果,平台一阶固有频率为49.6 Hz,在1 mm运动行程内,x、z轴方向的丢失运动分别小于0.32%、0.7%,输入耦合小于1.2%且输出完全解耦。为空间平动柔性微定位平台的设计、分析及优化提供了一种系统化的研究方法。

关键词: 柔性机构, 大行程, 结构设计, 非线性分析, 参数寻优

Abstract: In order to design spatial translational compliant micro-positioning stages with millimeter-scale motion range, excellent static and dynamic characteristics and various structures. Firstly, two new types of multi-degree-of-freedom and large-stroke compliant kinematic joints were designed. Then, three new types of spatial translational compliant micro-positioning stages with large motion range were designed based on these compliant kinematic joints. Next, Nonlinear method was used to modeling the force-displacement relationship, input coupling and lost motion of the stage, and compliance matrix method was used to modeling the stiffness and natural frequency of the stage. Afterwards, optimal parameter was searched to improve both static and dynamic performance of the stage. Finally, the validity of the theoretical model was proved by finite element simulation. According t o the results of both theory and simulation, the first-order natural frequency of the stage is 49.6 Hz. In 1 mm motion stroke, the lost motion in the x and z directions is less than 0.32% and 0.7%, the input coupling is less than 1.2% and the output motion is completely decoupled. It provides a systematic research method for the design, analysis and optimization of spatial translational compliant micro-positioning stages.

Key words: compliant mechanisms, large-range, structure design, nonlinear modeling, parameter optimization

中图分类号: