[1] HOWELL L L. Compliant mechanisms[M]. New York:John Wiley and Sons,2001. [2] 于靖军,郝广波,陈贵敏,等.柔性机构及其应用研究进展[J]. 机械工程学报,2015,51(13):53-68. YU Jingjun,HAO Guangbo,CHEN Guimin,et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering,2015,51(13):53-68. [3] YONG Y K,MOHEIMANI S O R,KENTON B J,et al. Invited review article:High-speed flexure-guided nanopositioning:Mechanical design and control issues[J]. Review of Scientific Instruments,2012,83(12):121101. [4] ZHU Z,TO S,ZHU W L,et al. Optimum design of a piezo-actuated triaxial compliant mechanism for nan-ocutting[J]. IEEE Transactions on Industrial Electronics,2018,65(8):6362-6371. [5] LIN C,WU Z H,REN Y H,et al. Characteristic analysis of unidirectional multi-driven and large stroke micro-/nano-transmission platform[J]. Microsystem Technolo-gies,2017,23(8):3389-3400. [6] WATANABE S,ANDO T. High-speed XYZ nano-positioner for scanning ion conductance microscopy[J]. Applied Physics Letters,2017,111(11):113106. [7] 李海洋,郝广波,于靖军,等.空间平动柔性并联机构的系统设计方法研究[J].机械工程学报,2018,54(13):57-65. LI Haiyang,HAO Guangbo,YU Jingjun. et al. Systematic approach to the design of spatial translational compliant parallel mechanisms[J]. Journal of Mechanical Engineering,2018,54(13):57-65. [8] HAO G B,LI H Y. Design of 3-legged XYZ compliant parallel manipulators with minimized parasitic rotate-ons[J]. Robotica,2015,33(4):787-806. [9] TANG X Y,CHEN I M,LI Q. Design and nonlinear modeling of a large-displacement XYZ flexure parallel mechanism with decoupled kinematic structure[J]. Rev-iew of Scientific Instruments,2006,77(11):115101-115111. [10] LI Y M,XU Q S. Design and optimization of an XYZ parallel micromanipulator with flexure hinges[J]. Journal of Intelligent and Robotic Systems,2009,55(4-5):377-402. [11] LI Y M,XU Q S. A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nano-manipulation[J]. IEEE Transactions on Automation Science and Engineering,2011,8(2):265-279. [12] YUE Y,GAO F,ZHAO X,et al. Relationship among input-force payload stiffness and displacement of a 3-DOF perpendicular parallel micro-manipulator[J]. Mechanism and Machine Theory,2010,45(5):756-771. [13] LI H Y,HAO G B,RICHARD C,et al. A new XYZ compliant parallel mechanism for nano-manipulation:Design and analysis[J]. Micromachines,2016,7(2):23. [14] ZHANG X Z,XU,Q S. Design,fabrication and testing of a novel symmetrical 3-DOF large-stroke parallel micro/nano-positioning stage[J]. Robotics and Computer-Integrated Manufacturing,2018,54:162-172. [15] HAO G B,KONG X W. Design and modeling of a large-range modular XYZ compliant parallel manipulator using identical spatial modules[J]. Journal of Mechanisms and Robotics,2012,4(2):021009. [16] LI Y M,WU Z G. Design,analysis and simulation of a novel 3-DOF translational micromanipulator based on the PRB model[J]. Mechanism and Machine Theory,2016,100:235-258. [17] KOSEKI Y,TANIKAWA T,KOYACHI N,et al. Kinematic analysis of translational 3-DOF micro parallel mechanism using matrix method[J]. IEEE/RSJ Intern-ational Conference on Intelligent Robots and Systems,2000,1(3):786-792. [18] TANG H,LI Y M. Design analysis and test of a novel 2-DOF nanopositioning system driven by dual mode[J]. IEEE Transactions on Robotics,2013,29(3):650-662. [19] AWTAR S,PARMAR G. Design of a large range XY nanopositioning system[J]. Journal of Mechanisms and Robotics,2013,5(2):021008. [20] MA F L,CHEN G M. Bi-BCM:A closed-form solution for fixed-guided beams in compliant mechanisms[J]. Journal of Mechanisms and Robotics,2017,9(1):014501. [21] HERPE X,WALKER R,DUNNIGAN M,et al. On a simplified nonlinear analytical model for the characteris-ation and design optimisation of a compliant XY micro-motion stage[J]. Robotics and Computer-Integrated Manufacturing,2018,49:66-76. [22] 杨志军,白有盾,陈新,等.基于应力刚化效应的动态特性可调微动平台设计新方法[J]. 机械工程学报,2015,51(23):153-159. YANG Zhijun,BAI Youdun,CHEN Xin,et al. A new design method of dynamic characteristics adjustable micro motion stage based on tension stiffening[J]. Journal of Mechanical Engineering,2015,51(23):153-159. |