• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2017, Vol. 53 ›› Issue (1): 72-78.doi: 10.3901/JME.2017.01.072

• 机械动力学 • 上一篇    下一篇

扫码分享

保持架不同引导方式下角接触球轴承 腔内气相流动分析*

王亚泰, 闫柯, 朱永生, 洪军, 张优云   

  1. 西安交通大学现代设计与转子轴承系统教育部重点实验室 西安 710049
  • 出版日期:2017-01-05 发布日期:2017-01-05
  • 作者简介:王亚泰,男,1991年出生。主要研究方向为滚动轴承油气两相流润滑技术。E-mail:ytwang@stu.xjtu.edu.cn朱永生(通信作者),男,1973年出生,博士,教授,博士研究生导师。主要研究方向为轴承服役状态建模及测试技术等。E-mail:yszhu@mail.xjtu.edu.cn
  • 基金资助:
    * 国家自然科学基金(51275383)和国家重点基础研究发展计划(973计划,2011CB706606) 资助项目; 20160215收到初稿,20160905收到修改稿;

Investigation on Internal Air Flow Pattern of Angular Contact Ball Bearing with Different Cage Guiding Approaches

WANG Yatai, YAN Ke, ZHU Yongsheng, HONG Jun, ZHANG Youyun   

  1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System,Xi’an Jiaotong University, Xi’an 710049
  • Online:2017-01-05 Published:2017-01-05

摘要:

滚动轴承高速运转时,轴承腔内空气流动加剧诱发漩涡及高压气障,影响油气输运及整体润滑性能。针对超高速时(dmn 值≥2.0×106mm·r·min-1)角接触球轴承腔内的气相流动问题,考虑轴承结构特点、接触特征及运动边界,采用旋转坐标系定义组件运动,建立轴承腔内气相流动高精度分析模型,分析了在保持架不同引导方式下轴承腔内压力分布、气相流动与阻力,温度场等变化规律,并基于场协同理论评判了轴承内部关键接触润滑区域的流动与换热性能。结果表明,超高速下轴承腔内压差急剧增大,外圈引导时轴承腔内流速、流阻、流动协同角最大,钢球表面动压明显。当转速超过3.0×104r·min-1时,轴承内圈接触区入口附近出现不同程度漩涡流动,导致接触区入口协同角增大,流动性能变差。该研究对超高速轴承结构设计、润滑结构及润滑参数优化具有重要的参考意义。

关键词: 保持架引导方式, 流动性能, 气相流动, 超高速球轴承

Abstract: In condition of high rotation speed, air vortexes and high pressure air blocks will be induced by the enhanced air flow inside the rolling bearing cavity, which will have strong effect on the oil-air transportation and lubrication performance of the ball bearings. For angular contact ball bearing at ultra high speed (dmn≥2.0×106mm·r·min-1), the air flow pattern is investigated in consideration of structure characteristics, contact feature and motion boundary. The rotating coordinate system is employed to denote bearing subassembly motions thus a high precise numerical model is achieved. The air pressure and temperature distribution, air flow pattern and resistance are discussed for different cage guiding approaches. Air flow and heat transfer performance, are evaluated via field synergy principle, especially for the key contact and lubrication areas. The results show that air pressure dramatically increases at ultra high rotation speed. The maximums of internal flow velocity, resistance, synergy angle and dynamic pressure around the ball occur under outer ring guiding condition. When the rotating speed is higher than 3.0×104r·min-1, new vortex appears near the entrance of inner raceway contact area, which induces the increase of synergy angle and the decline of flow performance.

 

Key words: air flow pattern, cage guiding approaches, fluid flow performance, ultra high speed ball bearing