[1] 柳晨光,初秀民,吴青,等. USV发展现状及展望[J]. 中国造船,2014,55(4):194-205. LIU Chenguang,CHU Xiumin,WU Qing,et al. A review and prospect of USV research[J]. Shipbuilding of China,2014,55(4):194-205. [2] 陈雪丽,程启明. 船舶自动舵控制技术的发展[J]. 南京工业大学学报,2001,23(4):101-105. CHEN Xueli,CHENG Qiming. The study on development of the control techniques on ship autopilot[J]. Journal of Nanjing University of Technology,2001,23(4):101-105. [3] 牟鹏程. 水面无人船轨迹跟踪控制方法研究[D]. 哈尔滨:哈尔滨工程大学,2013. MU Pengcheng. Research on control algorithm of trajectory tracking for unmanned surface vehicle[D]. Harbin:Harbin Engineering Univsersity,2013. [4] HOLZHẗER T,SCHULTZE R. Operating experience with a high-precision track controller for commercial ships[J]. Control Engineering Practice,1996,4(3):343-350. [5] LIU Cheng,ZOU Zaojian,YIN Jianchuan. Trajectory tracking of underactuated surface vessels based on neural network and hierarchical sliding mode[J]. Journal of Marine Science and Technology,2014,20(2):322-330. [6] LIAO Yulei,WAN Lei,ZHUANG Jiayuan. Backstepping dynamical sliding mode control method for the path following of the underactuated surface vessel[J]. Procedia Engineering,2011,15:256-263. [7] SASTRY S S,ISIDORI A. Adaptive control of linearizable systems[J]. IEEE Transactions on Automatic Control,1989,34(11):1123-1131. [8] TZENG C Y,GOODWIN G C,CRISAFULLI S. Feedback linearization design of a ship steering autopilot with saturating and slew rate limiting actuator[J]. International Journal of Adaptive Control & Signal Processing,2015,13(1):23-30. [9] 吴青华,蒋林. 非线性控制理论在电力系统中应用综述[J]. 电力系统自动化,2001,25(3):1-10. Wu Qinghua,JIANG Lin. Survey on nonlinear control theory and its applications in power systems[J]. Automation of Electric Power Systems,2001,25(3):1-10. [10] BURNS R S. The use of artificial neural networks for the intelligent optimal control of surface ships[J]. IEEE Journal of Oceanic Engineering,1995,20(1):65-72. [11] ZHANG Yao,HEARN G E,SEN P. A neural network approach to ship track-keeping control[J]. IEEE Journal of Oceanic Engineering,1996,21(4):513-527. [12] KRISTIN Y,PETTERSEN,HENK NIJMEIJER. Global practice stability and tracking for an underactuated ship-a combined averaging and backstepping approach[J]. Modeling Identification and Control,1999,20(4):189-200. [13] PETTERSEN K Y,NIJMEIJER H. Semi-global practical stabilization and disturbance adaptation for an underactuated ship[C]//Proceedings of the 39th IEEE Conference on Decision and Control. Sydney:IEEE,2000:2144-2149. [14] 陈虹. 模型预测控制[M]. 北京:科学出版社,2013. CHEN Hong. Model predictive control[M]. Beijing:Science Press,2013. [15] 胡耀华,贾欣乐. 具有约束条件的船舶运动预测控制[J]. 控制理论与应用,2000,17(4):542-547. HU Yaohua,JIA Xinle. Generalized predictive control of ships subject to state constraints[J]. Control Theory and Applications,2000,17(4):542-547. [16] YAN Zheng,WANG Jun. Model predictive control for tracking of underactuated vessels based on recurrent neural networks[J]. IEEE Journal of Oceanic Engineering,2012,37(4):717-726. [17] OH S R,SUN Jing. Path following of underactuated marine surface vessels using line-of-sight based model predictive control[J]. Ocean Engineering,2010,37(2):289-295. [18] 罗禹贡,陈涛,李克强. 混合动力汽车非线性模型预测巡航控制[J]. 机械工程学报,2015,51(16):11-21. LUO Yugong,CHEN Tao,LI Keqiang. Nonlinear model predictive cruise control of hybrid electric vehicle[J]. Journal of Mechanical Engineering,2015,51(16):11-21. [19] WANG Ning,ER M J. Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances[J]. IEEE Transactions on Control Systems Technology,2015,23(3):991-1002. [20] 柳晨光. 基于预测控制的无人船运动控制方法研究[D]. 武汉:武汉理工大学,2017. LIU Chenguang. Motion control of unmanned surface vehicles based on model predictive control[D]. Wuhan:Wuhan University of Technology,2017. [21] LI Zhen,SUN Jing,OH S. Path following for marine surface vessels with rudder and roll constraints:An MPC approach[C]//Proceedings of the 2009 American Control Conference. St. Louis:IEEE,2009:3611-3616. [22] LIU Lutao,LIU Zhilin,ZHANG Jun. LMI-based model predictive control for underactuated surface vessels with input constraints[J]. Abstract and Applied Analysis,2014:1-9. [23] WANG Xiaofei,ZHANG Baohua,CHU Deying,et al. Adaptive analytic model predictive controller for path following of underactuated ships[C]//Proceedings of the 2011 Chinese Control Conference (CCC). Yantai:IEEE,2011:5515-5521. [24] 罗伟林. 基于支持向量机方法的船舶操纵运动建模研究[D]. 上海:上海交通大学,2009. LUO Weilin. On the modeling of ship manoeuvring motion by using support vector machines[D]. Shanghai:Shanghai Jiao Tong University,2009. [25] 贾欣乐,杨盐生. 船舶运动数学模型:机理建模与辩识建模[M]. 大连:大连海事大学出版社,1999. JIA Xinle,YANG Yansheng. Ship motion mathematical model:Mechanism modeling and identification modeling[M]. Dalian:Dalian Maritime University Press,1999. [26] VELAGIC J,VUKIC Z,OMERDIC E. Adaptive fuzzy ship autopilot for track-keeping[J]. Control Engineering Practice,2003,11(4):433-443. [27] 张心光. 基于船舶操纵性试验分析的辨识建模研究[D]. 上海:上海交通大学,2012. ZHANG Xinguang. Identification modeling based on analysis of ship manoeuvring tests[D]. Shanghai:Shanghai Jiao Tong University,2012. [28] LIU Chenguang,NEGENBORN R R,CHU Xiumin,et al. Predictive path following based on adaptive line-of-sight for underactuated autonomous surface vessels[J]. Journal of Marine Science & Technology,2018,23(3):483-494. [29] LIU Chenguang,NEGENBORN R R,ZHENG Huarong,et al. A state-compensation extended state observer for model predictive control[J]. European Journal of Control,2017,36:1-9. |