| [1] EL-THALJI I,JANTUNEN E. A summary of fault modelling and predictive health monitoring of rolling element bearings[J]. Mechanical Systems & Signal Processing,2015,60-61(1):252-272. [2] BIN Guangfu,GAO Jinji,LI Xuejun,et al. Early fault diagnosis of rotating machinery based on wavelet packets-Empirical mode decomposition feature extraction and neural network[J]. Mechanical Systems & Signal Processing,2012,27(1):696-711.
 [3] 孙斌,薛广鑫. 基于等距特征映射和支持矢量机的转子故障诊断方法[J]. 机械工程学报,2012,48(9):129-135. SUN Bin,XUE Guangxin. Method of rotor fault diagnosis based on isometric feature mapping and support vector machine[J]. Journal of Mechanical Engineering,2012,48(9):129-135.
 [4] ZHANG Xinhai,LEI Yong. Application of bp neural network in mechanical fault diagnosis[J]. Noise & Vibration Control,2008,23(23):182-184.
 [5] 李巍华,史铁林,杨叔子. 基于核函数估计的转子故障诊断方法[J]. 机械工程学报,2006,42(9):76-82. LI Weihua,SHI Tielin,YANG Shuzi. Rotor fault diagnosis method based on kernel function estimation[J]. Chinese Journal of Mechanical Engineering,2006,42(9):76-82.
 [6] JIANG Li,XUAN Jianping,SHI Tielin. Feature extraction based on semi-supervised kernel Marginal Fisher analysis and its application in bearing fault diagnosis[J]. Mechanical Systems & Signal Processing,2013,41(1-2):113-126.
 [7] WANG Sheng,LU Jianfeng,GU Xingjian,et al. Semi-supervised linear discriminant analysis for dimension reduction and classification[J]. Pattern Recognition,2016,57(C):179-189.
 [8] HINTON G,SALAKHUTDINOV R. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786):504-507.
 [9] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018,54(5):94-104. LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering,2018,54(5):94-104.
 [10] CHEN Zhiqiang,DENG Shengcai,CHEN Xudong,et al. Deep neural networks-based rolling bearing fault diagnosis[J]. Microelectronics Reliability,2017,75:327-333.
 [11] SHAO Haidong,JIANG Hongkai,ZHANG Haizhou,et al. Electric locomotive bearing fault diagnosis using a novel convolutional deep belief Network[J]. IEEE Transactions on Industrial Electronics,2017,65(3):2727-2736.
 [12] LIU Jie,HU Youmin,WANG Yan,et al. An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis[J]. Measurement Science & Technology,2018,29(5).
 [13] SHAO Haidong,JIANG Hongkai,LI Xingqiu,et al. Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine[J]. Knowledge-based Systems,2018,140:1-14.
 [14] HINTON G. Deep belief networks[J]. Scholarpedia,2009,4(6):5947.
 [15] 赵光权,葛强强,刘小勇,等. 基于DBN的故障特征提取及诊断方法研究[J]. 仪器仪表学报,2016,37(9):1946-1953. ZHAO Guangquan,GE Qiangqiang,LIU Xiaoyong,et al. Fault feature extraction and diagnosis method based on deep belief network[J]. Chinese Journal of Scientific Instrument,2016,37(9):1946-1953.
 [16] 张淑清,胡永涛,姜安琦,等. 基于双树复小波和深度信念网络的轴承故障诊断[J]. 中国机械工程,2017,28(5):532-536. ZHANG Shuqing,HU Yongtao,JIANG Anqi,et al. Bearing fault diagnosis based on DTCWT and DBN[J]. China Mechanical Engineering,2017,28(5):532-536.
 [17] JIANG QuanSheng,JIA Minping,HU Jianzhong,et al. Machinery fault diagnosis using supervised manifold learning[J]. Mechanical Systems & Signal Processing,2009,23(7):2301-2311.
 [18] RADUCANU B,DORNAIKA F. A supervised non-linear dimensionality reduction approach for manifold learning[J]. Pattern Recognition,2012,45(6):2432-2444.
 [19] ZHANG Yun,LI Benwei,WANG Wen,et al. Supervised locally tangent space alignment for machine fault diagnosis[J]. Journal of Mechanical Science & Technology,2014,28(8):2971-2977.
 [20] LUNGA D,PRASAD S,CRAWFORD M,et al. Manifold learning based feature extraction for classification of hyperspectral data[J]. IEEE Signal Processing Magazine,2014,31(1):55-66.
 [21] NICOLAS L R,YOSHUA B. Representational power of restricted boltzmann machines and deep belief networks[J]. Neural Computation,2008,20(6):1631-1649.
 [22] 陶洁,刘义伦,杨大炼,等. 基于细菌觅食决策和深度置信网络的滚动轴承故障诊断[J]. 振动与冲击,2017,36(23):68-74. TAO Jie,LIU Yilun,YANG Dalian,et al. Rolling bearing fault diagnosis based on bacterial foraging algorithm and deep belief network[J]. Journal of Vibration and Shock,2017,36(23):68-74.
 [23] HINTON G. Training products of experts by minimizing contrastive divergence[J]. Neural Computation,2002,14(8):1771-1800.
 [24] LOPARO K A. Bearings vibration data set[DB/OL]. Cleveland,Ohio:Case Western Reserve University.[2014-10-28].http://csegroups.case.edu/bearingdatacenter/home.
 [25] 江丽,郭顺生. 基于半监督拉普拉斯特征映射的故障诊断[J]. 中国机械工程,2016,27(14):1911-1916. JIANG Li,GUO Shunsheng. Fault diagnosis based on semi-supervised laplacian eigenmaps[J]. China Mechanical Engineering,2016,27(14):1911-1916.
 [26] HE Qingbo. Time-frequency manifold for nonlinear feature extraction in machinery fault diagnosis[J]. Mechanical Systems & Signal Processing,2013,35(1-2):200-218.
 [27] 李巍华,单外平,曾雪琼. 基于深度信念网络的轴承故障分类识别[J]. 振动工程学报,2016,29(2):340-347. LI Weihua,SHAN Waiping,ZENG Xueqiong. Bearing fault classification and identification based on deep belief networks[J]. Journal of Vibration Engineering,2016,29(2):340-347.
 [28] GUO Liang,LEI Yaguo,LI Naipeng,et al. Machinery health indicator construction based on convolutional neural networks considering trend burr[J]. Neurocomputing,2018,292:142-150.
 |