• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2017, Vol. 53 ›› Issue (17): 50-59.doi: 10.3901/JME.2017.17.050

• 特邀专栏:500 m口径球面射电望远镜(FAST) • 上一篇    下一篇

扫码分享

FAST馈源支撑系统的终端精度保证研究

刘志远1, 陈炼1, 邵珠峰2,3, 王立平1,2,3, 唐晓强2,3   

  1. 1. 电子科技大学机械电子工程学院 成都 611731;
    2. 清华大学摩擦学国家重点实验室 北京 100084;
    3. 清华大学精密/超精密制造装备及控制北京市重点实验室 北京 100084
  • 收稿日期:2017-02-28 修回日期:2017-03-28 出版日期:2017-09-05 发布日期:2017-09-05
  • 通讯作者: 邵珠峰(通信作者),男,1983年出生,博士,副研究员。主要研究方向为并联机构优化设计、刚柔耦合系统及索驱动机器人。E-mail:shaozf@mail.tsinghua.edu.cn
  • 作者简介:刘志远,男,1993年出生。主要研究方向为索驱动及刚柔耦合机器人。E-mail:651883347@qq.com
  • 基金资助:
    国家自然科学基金(51575292,51475252)、国家科技支撑计划(2015BAF19B00)和国家留学基金(201606215004)资助项目

Terminal Accuracy of the Feed Support System in FAST

LIU Zhiyuan1, CHEN Lian1, SHAO Zhufeng2,3, WANG Liping1,2,3, TANG Xiaoqiang2,3   

  1. 1. School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731;
    2. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084;
    3. Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipment and Control, Tsinghua University, Beijing 100084
  • Received:2017-02-28 Revised:2017-03-28 Online:2017-09-05 Published:2017-09-05

摘要: 我国自主设计和建造的500 m口径大型射电望远镜(Five-hundred-meter aperture spherical radio telescope,FAST)已经顺利完成主体工程,后续将转入控制调试和试运行阶段。创新的光机电一体化的馈源支撑系统有效减轻了系统重量和造价,但是大跨度索并联机构的使用导致了风扰振动问题。FAST馈源支撑系统的终端轨迹精度是实现其观测能力的关键,因此迫切需要展开抑振控制研究,以保证系统稳定性和终端精度,支撑后续天文观测功能的实现。针对该问题,建立轨迹补偿和内力抑振控制逻辑,并利用馈源支撑系统缩尺模型完成了轨迹补偿抑振控制的试验研究。建立FAST馈源支撑系统的整体动力学仿真模型,开展了内力抑振控制的仿真研究。对上述两种抑振控制方法的特点和适用性展开了讨论。抑振控制方法及对比讨论研究为FAST项目的工程实践提供了理论指导和试验支撑,并可拓展应用于其他柔性支撑机构的控制研究。

关键词: 并联机构, 动力学, 刚柔耦合, 抑振控制

Abstract: The main project of the five-hundred-meter aperture spherical radio telescope (FAST) has been successfully completed, under the dependent design and construction of China. Further, the telescope will experience control system debugging and test runs. The integrated innovation of optics and mechatronics endows the feed support system with lightweight and low cost. However, adoption of large-span cable parallel mechanism could introduce the vibration problem under wind disturbances. Since terminal trajectory accuracy of the feed support system is the key to realize the observation ability of the FAST, research on the vibration suppression control is urgently required to carry out, to ensure system stability and terminal accuracy. To solve the problem, vibration control methods based on trajectory compensation and inertial force are proposed. Experimental study of the trajectory compensation method is carried out with the scale model of the feed support system. Then, the dynamic simulation model of the FAST feed support system is established, and the simulation research of the inertial force method is finished. Characteristics and applicability of these vibration control methods are analyzed and discussed. Vibration control methods and application analysis illustrated in this study provide theoretical guidance and experimental support for the FAST engineering practice, and could be further adopted to the control research of other mechanism with flexible support.

Key words: dynamics, parallel mechanism, rigid-flexible coupling, vibration suppression

中图分类号: