• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2017, Vol. 53 ›› Issue (20): 184-191.doi: 10.3901/JME.2017.20.184

• 交叉与前沿 • 上一篇    下一篇

压气机叶片三维流场耦合反问题设计方法

陈杰1,2, 孙立1,2, 马文孝1,2, 黄国平1,2   

  1. 1. 南京航空航天大学江苏省航空动力系统重点实验室 南京 210016;
    2. 南京航空航天大学能源与动力学院 南京 210016
  • 收稿日期:2016-09-12 修回日期:2017-03-20 出版日期:2017-10-20 发布日期:2017-10-20
  • 作者简介:陈杰,男,1980年出生,博士,讲师.主要研究方向为叶轮机械气体动力学、微型发动机.E-mail:chenj@nuaa.edu.cn

3D Inverse Design Method Coupling with Flowfield for Compressor Blade

CHEN Jie1,2, SUN Li1,2, MA Wenxiao1,2, HUANG Guoping1,2   

  1. 1. Jiangsu Province Key Laboratory of Aerospace Power Systems, Nanjing University of Aeronautics and Astronautics, Nanjing 210016;
    2. College of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
  • Received:2016-09-12 Revised:2017-03-20 Online:2017-10-20 Published:2017-10-20

摘要: 针对航空发动机等领域高性能压气机的发展需要,研究、构建并验证了一种压气机叶片三维反问题设计方法。该方法以叶片壁面压力分布作为目标参数,采用基于特征波理论的可穿透壁面边界条件计算匹配预设压力分布的流场,通过流线追踪求解目标叶片。根据叶片求解系统对流场参数的敏感性分析,提出采用重构独立型面求解网格和对预设压力分布添加松弛因子两种降低对流场计算精度依赖程度的措施,在几乎不增加计算资源需求和设计时间的前提下,提高了反问题设计系统的求解准确度。为检验反问题设计方法关键原理的正确性和降低设计误差措施的有效性,进行了多种算例验证,结果表明所构建的反问题设计方法可准确高效地实现轴流压气机叶片气动反问题设计。

关键词: 边界条件, 反问题方法, 航空发动机, 流线追踪, 气动设计, 轴流压气机

Abstract: For the demand for development of the high-performance compressor used in fields such as aeroengine, an inverse design method for three-dimensional compressor blade is studied, created and validated. The pressure on the blade surface is used as the prescribed parameter. The permeable wall boundary condition is constructed basing on the characteristic wave theory for non-viscous flow, with which the flow field matching the prescribed pressure is solved. The blade geometry is solved by tracing streamline. Through the analysis on sensitivity of the surface correction system to the flow field parameters, the measures including mesh reconstruction for solving profile and relaxation for the prescribed pressure distribution are put forward to reduce the dependence on the calculation precision of flow field. The accuracy of the inverse design systems is improved without increasing design time and computational cost. The key principles of the inverse method and the measures reducing errors are verified by varieties of testing cases. The results show that the aerodynamic design of axial flow compressor blade can be done accurately and efficiently through the inverse method proposed.

Key words: aerodynamic design, aeroengine, axial compressor, boundary conditions, inverse method, streamline tracing

中图分类号: