• CN:11-2187/TH
  • ISSN:0577-6686

›› 2008, Vol. 44 ›› Issue (10): 228-233.

• 论文 • 上一篇    下一篇

扫码分享

用于故障诊断的网络分割谱聚类方法

王娜; 杜海峰; 庄健; 王孙安   

  1. 西安交通大学现代设计和转子轴承系统教育部重点试验室;西安交通大学公共政策与管理学院
  • 发布日期:2008-10-15

Spectral Clustering Method Based on Network Segmentation Used in Fault Diagnosis

WANG Na;DU Haifeng;ZHANG Jian;WANG Sunan   

  1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University School of Public Policy and Administration, Xi’an Jiaotong University
  • Published:2008-10-15

摘要: 提出故障诊断的可观测量网络模型,从故障诊断的模式识别本质出发,把故障数据聚类转化为网络分割问题。利用最小最大切判据构造分割的目标函数,针对传统最优化最小最大切判据计算量大的缺点,利用k-means算法对其寻找最优分割点过程进行改进。标准数据集测试和一个四级压缩机故障系统诊断试验表明,新算法对数据分布没有严格要求,能快速有效地获得数据样本特征,实现数据的聚类,从而完成故障状态识别和分类。

关键词: k-means, 故障诊断, 谱聚类, 图分割, 并联机构 闭环结构 运动学分析 性能分析 轨迹规划

Abstract: The network model of fault diagnosis is put forward, so the data clustering is transformed to network segmentation. And the min-max cut criterion is taken as objective function of segmentation. In view of the disadvantage of the higher computation complexity in the traditional min-max cut criterion optimization algorithm, an algorithm using k-means to improve the process of searching optimal segmentation point is introduced. The applications such as benchmark data and four-stage piston compressor diagnosis problem show that the new algorithm has no strict requirements on data distribution, and can achieve feature extraction and diagnosis fast and effectively.

Key words: Fault diagnosis, Graph segmentation, k-means, Spectral clustering, parallel mechanism closed-loop structure kinematics analysis performance analysis trajectory planning

中图分类号: