• CN:11-2187/TH
  • ISSN:0577-6686

›› 2003, Vol. 39 ›› Issue (7): 89-93.

• 论文 • 上一篇    下一篇

扫码分享

基于神经元的多传感器数据级融合研究

谷立臣;张优云   

  1. 西安建筑科技大学机电工程学院;;西安交通大学
  • 发布日期:2003-07-15

RESEARCH ON MULTI-SENSOR DATA LEVEL FUSION BASED ON ARTIFICIAL NEURON

Gu Lichen;Zhang Youyun   

  1. Xi'an University of Architecture & Technology Xi'an Jiaotong University
  • Published:2003-07-15

摘要: 在不知道先验知识的条件下,从含有观测噪声的多传感器测量数据中估计出方均误差最小的数据融合值,并作为神经元融合系统训练样本,因而解决了多传感器测量系统数据级融合的标定问题。研究结果表明,融合数据在精度﹑容错性以及动态响应方面均优于单传感器测量。

关键词: 多传感器数据, 方均误差, 融合标定, 神经元, 数据级融合, 磁弹, 拉力测量, 谐波分析, 总谐波畸变率

Abstract: The main goal of this thesis is to obtain reliable outputs, which requires robustness relative to the noise included in input data and to the sensor deterioration or even the missing of the sensor. Without of any pre-defined knowledge concerning sensors,the multi-sensor data level fusion model based on artifical neuron can be used for the estimation of fused data with minimum mean square errors through observed data so as to calibrate the fusion neuron. Simulation results show that the fused data are much more sensitive,accurate,reliable than that of single sensor data .

Key words: Artifical neuron, Data level fusion, Fusion calibration, Mean square error, Multi-sensor data, Elastomagnetic, Harmonic Analysis, Tension Measurement, Total Harmonic Distortion

中图分类号: