机械工程学报 ›› 2025, Vol. 61 ›› Issue (8): 170-192.doi: 10.3901/JME.2025.08.170
• 运载工程 • 上一篇
张保坤1,2, 邓钧君1,2, 王震坡1,2, 陈德亮1,2, 李蓝天1,2, 李明洋1,2
收稿日期:
2024-05-05
修回日期:
2024-10-26
发布日期:
2025-05-10
作者简介:
张保坤,男,1997年出生,博士研究生。主要研究方向为无线电能传输技术。E-mail:bk.zhang@bit.edu.cn;邓钧君(通信作者),男,1985年出生,博士,特别研究员,博士研究生导师。主要研究方向为无线电能传输、谐振功率变换和电动汽车充电技术。E-mail:dengjunjun@bit.edu.cn;王震坡,男,1976年出生,博士,教授,博士研究生导师。主要研究方向为动力电池成组理论与应用、安全管理及充/换电站技术等。E-mail:wangzhenpo@bit.edu.cn;陈德亮,男,1994年出生,博士。主要研究方向为DC-DC功率变换、固态变压器、无线电能传输。E-mail:chendeliang@bit.edu.cn;李蓝天,男,1995年出生,博士。主要研究方向为无线电能传输、磁耦合机构鲁棒优化。E-mail:ericlee0126@gmail.com;李明洋,男,1997年出生,博士研究生。主要研究方向为无线电能传输技术。E-mail:limingyang@gmail.com
基金资助:
ZHANG Baokun1,2, DENG Junjun1,2, WANG Zhenpo1,2, CHEN Deliang1,2, LI Lantian1,2, LI Mingyang1,2
Received:
2024-05-05
Revised:
2024-10-26
Published:
2025-05-10
摘要: 随着电动汽车保有量的持续增长和车网互动技术的不断发展,亟需电动汽车双向充放电接口的研究与开发。凭借便捷、灵活、互动能力强等优势,双向无线电能传输系统得到了日益广泛的关注。综述了电动汽车双向无线电能传输系统的重要技术、研究现状与发展趋势。从系统的结构组成和关键技术出发,首先,总结了基于两级式和单级式功率变换的主功率拓扑的相关研究。其次,对比了主流的补偿拓扑及特性,分析了补偿网络与互操作性的关系。再次,归纳了系统建模和控制方法,梳理了效率优化策略的发展脉络,汇总了无线信号传输的相位同步技术。最后,针对现有研究的局限性,提出了技术的发展趋势和研究思路;以期促进双向无线电能传输系统在电动汽车领域的技术创新及推广应用。
中图分类号:
张保坤, 邓钧君, 王震坡, 陈德亮, 李蓝天, 李明洋. 电动汽车双向无线电能传输系统研究综述[J]. 机械工程学报, 2025, 61(8): 170-192.
ZHANG Baokun, DENG Junjun, WANG Zhenpo, CHEN Deliang, LI Lantian, LI Mingyang. Review of Bidirectional Wireless Power Transfer Systems for Electric Vehicles[J]. Journal of Mechanical Engineering, 2025, 61(8): 170-192.
[1] 中华人民共和国公安部. 2023年上半年全国机动车达4.26亿辆驾驶人达5.13亿人新能源汽车保有量达1620万辆[EB/OL]. [2023-07-25]. https://www.mps.gov. cn/n2254314/n6409334/c9106375/content.html. The Ministry of Public Security of the People’s Republic of China. As of the first half year of 2023,there were 426 million motor vehicles in China,and the number of drivers and new energy vehicles was up to 513 million and 16.2 million,respectively. [EB/OL]. [2023-07-25]. https://www.mps.gov.cn/n2254314/n6409334/c9106375/content.html. [2] 刘晓飞,张千帆,崔淑梅. 电动汽车V2G技术综述[J]. 电工技术学报,2012,27(2):121-127. LIU Xiaofei,ZHANG Qianfan,CUI Shumei. Review of electric vehicle V2G technology[J]. Transactions of China Electrotechnical Society,2012,27(2):121-127. [3] 师瑞峰,李少鹏. 电动汽车V2G问题研究综述[J]. 电力系统及其自动化学报,2019,31(6):28-37. SHI Ruifeng,LI Shaopeng. Review on studies of V2G problem in electric vehicles[J]. Proceedings of the CSU-EPSA,2019,31(6):28-37. [4] 鲍健强,欧万彬,叶瑞克. 电动汽车与智能电网:两大战略性新兴产业的交互——V2G推进汽车工业和传统电网的低碳化转型研究[J]. 科技管理研究,2011,31(22):24-28. BAO Jianqiang,OU Wanbin,YE Ruike. Electric vehicles and smart grid:the interaction of two new strategic industries—research on V2G for promoting the transformation of low carbonization of vehicles industry and traditional grid[J]. Science and Technology Management Research,2011,31(22):24-28. [5] HUANG X,QIANG H,HUANG Z,et al. The interaction research of smart grid and EV based wireless charging[C]// IEEE Vehicle Power and Propulsion Conference (VPPC). Beijing,China:IEEE,2013:354-358. [6] 范兴明,莫小勇,张鑫. 无线电能传输技术的研究现状与应用[J]. 中国电机工程学报,2015,35(10):2584-2600. FAN Xingming,MO Xiaoyong,ZHANG Xin. Research status and application of wireless power transmission technology[J]. Proceedings of the CSEE,2015,35(10):2584-2600. [7] 高大威,王硕,杨福源. 电动汽车无线充电技术的研究进展[J]. 汽车安全与节能学报,2015,6(4):314-327. GAO Dawei,WANG Shuo,YANG Fuyuan. State-of-art of the wireless charging technologies for electric vehicles[J]. J Automotive Safety and Energy,2015,6(4):314-327. [8] 赵争鸣,刘方,陈凯楠. 电动汽车无线充电技术研究综述[J]. 电工技术学报,2016,31(20):30-40. ZHAO Zhengming,LIU Fang,CHEN Kainan. New progress of wireless charging technology for electric vehicles[J]. Transactions of China Electrotechnical Society,2016,31(20):30-40. [9] MADAWALA U,THRIMAWITHANA D. A bidirectional inductive power interface for electric vehicles in V2G systems[J]. IEEE Transactions on Industrial Electronics,2011,58(10):4789-4796. [10] TRITSCHLER J,REICHERT S,GOELDI B. A practical investigation of a high power,bidirectional charging system for electric vehicles[C]// 16th European Conference on Power Electronics and Applications. Lappeenranta,Finland:IEEE,2014:1-7. [11] GOELDI B,TRITSCHLER J,REICHERT S. Measurement results of a 22 kW bidirectional inductive charger[C]//Proceedings of PCIM Europe 2015;International Exhibition and Conference for Power Electronics,Intelligent Motion,Renewable Energy and Energy Management. Nuremberg,Germany,VDE,2015:1-8. [12] TACHIKAWA K,KESLER M,ATASOY O. Feasibility study of bi-directional wireless charging for vehicle-to- grid 2018-01-0669[EB/OL]. [2023-07-25]. https://www. sae.org/publications/technical-papers/content/2018-01-0669/. [13] TACHIKAWA K,KESLER M,DANILOVIC M,et al. Bi-directional wireless power transfer for vehicle-to-grid:demonstration and performance analysis 2019-01-0870[EB/OL]. [2023-07-25]. https://www.sae.org/publications/ technical-papers/content/2019-01-0870/. [14] SARRAZIN B,DERBEY A,ALBOUY P,et al. Bidirectional wireless power transfer system with wireless control for electrical vehicle[C]//2019 IEEE Applied Power Electronics Conference and Exposition (APEC). Anaheim,CA,USA:IEEE,2019:3137-3143. [15] MOHAMMAD M,ONAR O,SU G,et al. Bidirectional LCC-LCC compensated 20 kW wireless power transfer system for medium-duty vehicle charging[J]. IEEE Transactions on Transportation Electrification,2021,7(3):1205-1218. [16] Department of Energy. Bi-directional wireless power flow for medium-duty vehicle-to-grid connectivity[EB/OL]. [2023-07-26].https://www.energy.gov/eere/vehicles/articles/bi-directional-wireless-power-flow-medium-duty-vehicle-grid-connectivity. [17] JOU H,WU J,WU K,et al. Bidirectional DC-DC wireless power transfer based on LCC-C resonant compensation[J]. IEEE Transactions on Power Electronics,2021,36(2):2310-2319. [18] 李其琪. 电动汽车高效率无线双向充放电系统研究[D]. 武汉:华中科技大学,2021. LI Qiqi. High-efficiency bidirectional inductive power transfer systems for electric vehicle charging-discharging applications[D]. Wuhan:Huazhong University of Science and Technology,2021. [19] ZHANG Y,GUO Y,YAN B,et al. A research on characteristics of bidirectional wireless power transfer system[C]//2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC). Shenzhen:IEEE,2018:1-4. [20] ZHANG Y,GUO Y,WANG L,et al. An optimization method of dual-side LCC compensation networks simultaneously considering output power and transmission efficiency in two directions for BWPT systems[J]. IEEE Journal of Emerging and Selected Topics in Industrial Electronics,2022,3(3):500-508. [21] SWAIN A,NEATH M,MADAWALA U,et al. A dynamic multivariable state-space model for bidirectional inductive power transfer systems[J]. IEEE Transactions on Power Electronics,2012,27(11):4772-4780. [22] THRIMAWITHANA D,MADAWALA U. A generalized steady-state model for bidirectional IPT systems[J]. IEEE Transactions on Power Electronics,2013,28(10):4681-4689. [23] SWAIN A,DEVARAKONDA S,MADAWALA U. Modeling,sensitivity analysis,and controller synthesis of multipickup bidirectional inductive power transfer systems[J]. IEEE Transactions on Industrial Informatics,2014,10(2):1372-1380. [24] MOHAMED A,LASHWAY C,MOHAMMED O. Modeling and feasibility analysis of quasi-dynamic WPT system for EV applications[J]. IEEE Transactions on Transportation Electrification,2017,3(2):343-353. [25] MOHAMED A,BERZOY A,MOHAMMED O. Experimental validation of comprehensive steady-state analytical model of bidirectional WPT system in EVs applications[J]. IEEE Transactions on Vehicular Technology,2017,66(7):5584-5594. [26] 张玉旺,王丽芳,郭彦杰,等. 整流模式下BWPT系统功率变换器的等效输入阻抗分析[J]. 电力系统自动化,2019,43(12):158-164. ZHANG Yuwang,WANG Lifang,GUO Yanjie,et al. Equivalent input impedance analysis of power converter for bidirectional wireless power transfer system in rectification mode[J]. Automation of Electric Power Systems,2019,43(12):158-164. [27] MOHAMED A,MARIM A,MOHAMMED O. Magnetic design considerations of bidirectional inductive wireless power transfer system for EV applications[J]. IEEE Transactions on Magnetics,2017,53(6):1-5. [28] WU J,DAI X,GAO R,et al. A coupling mechanism with multidegree freedom for bidirectional multistage WPT system[J]. IEEE Transactions on Power Electronics,2021,36(2):1376-1387. [29] SONG Y,MADAWALA U,THRIMAWITHANA D,et al. Three‐phase bi‐directional wireless EV charging system with high tolerance to pad misalignment[J]. IET Power Electronics,2019,12(10):2697-2705. [30] ZHAO L,THRIMAWITHANA D,MADAWALA U. Hybrid bidirectional wireless EV charging system tolerant to pad misalignment[J]. IEEE Transactions on Industrial Electronics,2017,64(9):7079-7086. [31] MOHAMED A,BERZOY A,ALMEIDA F,et al. Modeling and assessment analysis of various compensation topologies in bidirectional IWPT system for EV applications[J]. IEEE Transactions on Industry Applications,2017,53(5):4973-4984. [32] 陈凯楠,赵争鸣,刘方,等. 电动汽车双向无线充电系统谐振拓扑分析[J]. 电力系统自动化,2017,41(02):66-72. CHEN Kainan,ZHAO Zhengming,LIU Fang,et al. Analysis of resonant topology for bi-directional wireless charging of electric vehicle[J]. Automation of Electric Power Systems,2017,41(02):66-72. [33] MOHAMMAD M,ANWAR S,ONAR O,et al. Sensitivity analysis of an LCC-LCC compensated 20-kW bidirectional wireless charging system for medium-duty vehicles[C]//2019 IEEE Transportation Electrification Conference and Expo (ITEC). Detroit,MI,USA:IEEE,2019:1-7. [34] MOHAMED A,MOHAMMED O. Physics-based co- simulation platform with analytical and experimental verification for bidirectional IPT system in EV applications[J]. IEEE Transactions on Vehicular Technology,2018,67(1):275-284. [35] WEEARSINGHE S,THRIMAWITHANA D,MADAWALA U. Modeling bidirectional contactless grid interfaces with a soft dc-link[J]. IEEE Transactions on Power Electronics,2015,30(7):3528-3541. [36] ZHAO L,THRIMAWITHANA D,MADAWALA U,et al. A push-pull converter based BD-IPT system for wireless grid integration of EVs[C]//2016 IEEE Power and Energy Conference at Illinois (PECI). Urbana,IL,USA:IEEE,2016:1-6. [37] 张欢. 电流源型双向感应耦合电能传输系统的研究[D]. 重庆:重庆大学,2017. ZHANG Huan. Research on current sourced bi-directional inductively coupled power transfer system[D]. Chongqing:Chongqing University,2017. [38] WEERASINGHE S,MADAWALA U,THRIMAWITHANA D. A matrix converter-based bidirectional contactless grid interface[J]. IEEE Transactions on Power Electronics,2017,32(3):1755-1766. [39] ASA E,ONAR O,GALIGEKERE V,et al. A novel bi-directional AC/DC-DC/AC wireless power transfer system for grid support applications[C]//2021 IEEE Applied Power Electronics Conference and Exposition (APEC). Phoenix,AZ,USA:IEEE,2021:1197-1202. [40] GUAN L,WANG Z,LIU P,et al. A three-phase to single-phase matrix converter for bidirectional wireless power transfer system[C]//IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society. Lisbon,Portugal:IEEE,2019:4451-4456. [41] 关蕾. 电动汽车用双向无线电能传输功率电路设计与控制[D]. 南京:东南大学,2020. GUAN Lei. Design and control of wireless charging system for electric vehicle[D]. Nanjing:Southeast University,2020. [42] MADAWALA U,NEATH M,THRIMAWITHANA D. A power-frequency controller for bidirectional inductive power transfer systems[J]. IEEE Transactions on Industrial Electronics,2013,60(1):310-317. [43] SWAIN A,ALMAKHLES D,NEATH M,et al. Robust H∞ output feedback control of bidirectional inductive power transfer systems[J]. Archives of Control Sciences,2017,27(1):41-62. [44] MOHAMED A,MOHAMMED O. Bilayer predictive power flow controller for bidirectional operation of wirelessly connected electric vehicles[J]. IEEE Transactions on Industry Applications,2019,55(4):4258-4267. [45] 戴欣,孙跃,苏玉刚,等. 非接触电能双向推送模式研究[J]. 中国电机工程学报,2010,30(18):55-61. DAI Xin,SUN Yue,SU Yugang,et al. Study on contactless power bi-directional push mode[J]. Proceedings of the CSEE,2010,30(18):55-61. [46] 王品一. 非接触双向电能传输电路的研究[D]. 重庆:重庆大学,2011. WANG Pinyi. Study on bi-directional transmission circuit of contactless power transmission[D]. Chongqing:Chongqing University,2011. [47] TANG C,DAI X,WANG Z,et al. A bidirectional contactless power transfer system with dual-side power flow control[C]//2012 IEEE International Conference on Power System Technology (POWERCON). Auckland:IEEE,2012:1-6. [48] 杨芳勋,孙跃,戴欣. 多负载感应耦合电能双向传输的仿真[J]. 中南大学学报(自然科学版),2012,43(10):3865-3871. YANG Fangxun,SUN Yue,DAI Xin. Simulation of multi-load inductive coupled power bi-directional transfer mode[J]. Journal of Central South University (Science and Technology),2012,43(10):3865-3871. [49] DAI X,WU J,JIANG J,et al. An energy injection method to improve power transfer capability of bidirectional WPT system with multiple pickups[J]. IEEE Transactions on Power Electronics,2021,36(5):5095-5107. [50] 谭林林,颜长鑫,刘志仁,等. 多单元耦合的能量双向无线馈动系统分析及控制策略[J]. 电力系统自动化,2017,41(2):38-45. TAN Linlin,YAN Changxin,LIU Zhiren,et al. Analysis of multi-unit coupling bi-directional wireless power transfer system and its control scheme[J]. Automation of Electric Power Systems,2017,41(2):38-45. [51] 颜长鑫. 能量双向馈动的无线电能传输系统建模及控制[D]. 南京:东南大学,2017. YAN Changxin. Modeling and control of wireless power transfer system with bidirectional energy interaction[D]. Nanjing:Southeast University,2017. [52] TAN L,ZHANG Z,ZHANG Z,et al. A segmented power-efficiency coordinated control strategy for bidirectional wireless power transmission systems with variable structural parameters[J]. IEEE Access,2018,6:40289-40301. [53] 张振兴. 电动汽车无线充放电系统参数优化与协调控制方法研究[D]. 南京:东南大学,2019. ZHANG Zhenxing. Research on parameter optimization and coordinated control method of wireless charging and discharging system for electric vehicle[D]. Nanjing:Southeast University,2019. [54] TAN T,LIN Q,YUAN L,et al. A bidirectional wireless power transfer system control strategy independent of real-time wireless communication[J]. IEEE Transactions on Industry Applications,2020,56(2):1587-1598. [55] 刘方,陈凯楠,蒋烨,等. 双向无线电能传输系统效率优化控制策略研究[J]. 电工技术学报,2019,34(5):891-901. LIU Fang,CHEN Kainan,JIANG Ye,et al. Research on the overall efficiency optimization of the bidirectional wireless power transfer system[J]. Transactions of China Electrotechnical Society,2019,34(5):891-901. [56] 贾舒然. 电动汽车双向无线电能传输系统的控制技术研究[D]. 武汉:华中科技大学,2020. JIA Shuran. Research on control technique of bi- directional wireless power transfer system for electric vehicles[D]. Wuhan:Huazhong University of Science and Technology,2020. [57] ZHANG X,CAI T,DUAN S,et al. A control strategy for efficiency optimization and wide ZVS operation range in bidirectional inductive power transfer system[J]. IEEE Transactions on Industrial Electronics,2019,66(8):5958-5969. [58] JIANG M,CHEN C,CHEN H,et al. A fundamental- harmonic hybrid power transfer strategy for bidirectional inductive power transfer[C]//2021 IEEE 4th International Electrical and Energy Conference (CIEEC). Wuhan,China:IEEE,2021:1-6. [59] JIANG M,CHEN C,JIA S,et al. An asymmetrical pulsewidth modulation with even harmonics for bidirectional inductive power transfer under light load conditions[J]. IEEE Transactions on Industrial Electronics,2022,69(9):8939-8948. [60] 蒋梦杰. 双向无线电能传输系统的基波-谐波混合功率传输策略[D]. 武汉:华中科技大学,2021. JIANG Mengjie. Fundamental-harmonic power transmission strategy of bidirectional inductive power transfer system[D]. Wuhan:Huazhong University of Science and Technology,2021. [61] CHEN H,CHEN C,JIA S,et al. An optimal variable- frequency asymmetrical-phase-shift strategy for wireless power transfer system[C]//2022 IEEE 5th International Electrical and Energy Conference (CIEEC). Nangjing,China:IEEE,2022:2656-2660. [62] LIU Y,MADAWALA U,MAI R,et al. Zero-phase-angle controlled bidirectional wireless EV charging systems for large coil misalignments[J]. IEEE Transactions on Power Electronics,2020,35(5):5343-5353. [63] LIU Y,MADAWALA U,MAI R,et al. An optimal multivariable control strategy for inductive power transfer systems to improve efficiency[J]. IEEE Transactions on Power Electronics,2020,35(9):8998-9010. [64] LI Y,SUN W,ZHU X,et al. A hybrid modulation control for wireless power transfer systems to improve efficiency under light-load conditions[J]. IEEE Transactions on Industrial Electronics,2022,69(7):6870-6880. [65] THRIMAWITHANA D,MADAWALA U,NEATH M. A P&Q based synchronization technique for Bi-directional IPT pick-ups[C]//2011 IEEE Ninth International Conference on Power Electronics and Drive Systems. Singapore,Singapore:IEEE,2011:40-45. [66] THRIMAWITHANA D,MADAWALA U,NEATH M. A synchronization technique for bidirectional IPT systems[J]. IEEE Transactions on Industrial Electronics,2013,60(1):301-309. [67] LIU F,LI K,CHEN K,et al. A phase synchronization technique based on perturbation and observation for bidirectional wireless power transfer system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2020,8(2):1287-1297. [68] JIA S,CHEN C,LIU P,et al. A digital phase synchronization method for bidirectional inductive power transfer[J]. IEEE Transactions on Industrial Electronics,2020,67(8):6450-6460. [69] JIA S,DUAN S. Multi-level staircase signal based quadrature phase detection for fundamental power angle acquisition of BIPT systems[C]//2022 IEEE 5th International Electrical and Energy Conference (CIEEC). Nangjing,China:IEEE,2022:809-815. [70] ZHAO S,LI Y,WU D,et al. Current- decomposition- based digital phase synchronization method for BWPT system[J]. IEEE Transactions on Power Electronics,2021,36(11):12183-12188. [71] 王佩月,左志平,孙跃,等. 基于双侧LCC的全双工无线电能传输能量信号并行传输系统[J]. 电工技术学报,2021,36(23):4981-4991. WANG Peiyue,ZUO Zhiping,SUN Yue,et al. Full-duplex simultaneous wireless power and data transfer system based on double-sided LCC topology[J]. Transactions of China Electrotechnical Society,2021,36(23):4981-4991. [72] YANG X,LI Y,CHEN J,et al. A cost-effective implementation of independent data and power transmission channels in wireless power transfer systems[J]. IEEE Transactions on Circuits and Systems II:Express Briefs,2022,69(3):1532-1536. [73] JI L,WANG L,LIAO C,et al. Simultaneous wireless power and bidirectional information transmission with a single-coil,dual-resonant structure[J]. IEEE Transactions on Industrial Electronics,2019,66(5):4013-4022. [74] ASA E,COLAK K,CZARKOWSKI D,et al. Efficiency analysis of a Bi-directional DC/DC converter for wireless energy transfer applications[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE). Montreal,QC,Canada:IEEE,2015:594-598. [75] FUKUOKA H,OHARA S,OMORI H,et al. A new resonant IPT wireless V2H system with bidirectional single-ended inverter[C]//201416th European Conference on Power Electronics and Applications. Lappeenranta,Finland:IEEE,2014:1-6. [76] NGUYEN B,VILATHGAMUWA D,FOO G,et al. Cascaded multilevel converter based bidirectional inductive power transfer (BIPT) system[C]//2014 International Power Electronics Conference(IPEC- Hiroshima 2014-ECCE ASIA). Hiroshima,Japan:IEEE,2014:2722-2728. [77] NGUYEN B,VILATHGAMUWA D,FOO G,et al. A multilevel converter topology based bidirectional inductive power transfer system with improved characteristics[C]//20159th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia). Seoul,South Korea:IEEE,2015:1673-1677. [78] COLAK K,ASA E,CZARKOWSKI D,et al. A novel multi-level bi-directional DC/DC converter for inductive power transfer applications[C]//IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society. Yokohama:IEEE,2015:003827-003831. [79] SAMANTA S,RATHORE A,THRIMAWITHANA D. Bidirectional current-fed half-bridge (C) (LC)–(LC) configuration for inductive wireless power transfer system[J]. IEEE Transactions on Industry Applications,2017,53(4):4053-4062. [80] ZHAO L,THRIMAWITHANA D,MADAWALA U,et al. A push-pull parallel resonant converter-based bidirectional IPT system[J]. IEEE Transactions on Power Electronics,2020,35(3):2659-2667. [81] GARCIA A,AVILA A,ALZUGUREN I,et al. Power factor corrector control strategies of a bidirectional wireless battery charger with an unfolding active rectifier[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2022,11(1):396-406. [82] THRIMAWITHANA D,MADAWALA U. A novel matrix converter based bi-directional IPT power interface for V2G applications[C]//2010 IEEE International Energy Conference. Manama,Bahrain:IEEE,2010:495-500. [83] MOGHADDAMI M,SARWAT A. Single-phase soft-switched AC-AC matrix converter with power controller for bidirectional inductive power transfer systems[J]. IEEE Transactions on Industry Applications,2018,54(4):3760-3770. [84] MOGHADDAMI M,SARWAT A. A three-phase AC-AC matrix converter with simplified bidirectional power control for inductive power transfer systems[C]//2018 IEEE Transportation Electrification Conference and Expo (ITEC). Long Beach,CA:IEEE,2018:380-384. [85] VARDANI B,TUMMURU N. A single-stage bidirectional inductive power transfer system with closed-loop current control strategy[J]. IEEE Transactions on Transportation Electrification,2020,6(3):948-957. [86] 杨快荣. 单相矩阵式无线电能传输系统建模与控制研究[D]. 天津:河北工业大学,2022. YANG Kuairong. Research on modeling and control of single phase matrix converter based wireless power transfer systems[D]. Tianjin:Hebei University of Technology,2022. |
[1] | 汤勇, 赵威, 尹树彬, 袁雪鹏, 袁伟, 张仕伟. 基于相变传热的动力电池高效复合热控技术研究综述[J]. 机械工程学报, 2025, 61(4): 176-194. |
[2] | 尤国贵, 卢剑伟, 张国军, 苏俊收, 蔡泽民. 插电式混合动力汽车能量管理策略研究综述[J]. 机械工程学报, 2025, 61(4): 195-218. |
[3] | 王法安, 杨全合, 殷国栋, 梁晋豪, 张兆国. 考虑时变状态参数的车辆纵-垂向运动矢量控制[J]. 机械工程学报, 2025, 61(4): 239-248. |
[4] | 李骏, 李继秋, 孙亚诚, 单丰武, 曾建邦. 基于驾驶行为的纯电动汽车剩余续驶里程预测[J]. 机械工程学报, 2025, 61(4): 262-272. |
[5] | 金贤建, 王佳栋, 徐利伟, 严择圆, 卢彦博, 殷国栋, 陈南. 轮毂电机驱动电动汽车主动悬架μ综合鲁棒控制研究[J]. 机械工程学报, 2024, 60(16): 259-269. |
[6] | 张奇祥, 王金湘, 张伊晗, 张荣林, 靳立强, 殷国栋. 智能电动汽车线控制动关键技术与研究进展[J]. 机械工程学报, 2024, 60(10): 339-365. |
[7] | 张雷, 王祺, 王震坡, 丁晓林, 孙逢春. 基于线控制动的分布式驱动电动汽车制动俯仰角舒适控制研究[J]. 机械工程学报, 2024, 60(10): 463-475. |
[8] | 赵明慧, 郭浩然, 张利鹏, 刘欣. 四轮独立转向分布式驱动电动汽车单轮转向失效行驶稳定性控制[J]. 机械工程学报, 2024, 60(10): 507-522. |
[9] | 吴建洋, 王震坡, 张雷, 丁晓林. 四轮轮毂电机驱动电动汽车纵侧向稳定性协调控制策略研究[J]. 机械工程学报, 2023, 59(4): 163-172. |
[10] | 肖宗鑫, 胡明辉, 石力王, 周安健. 电动汽车内置式永磁同步电机转子温度在线估计[J]. 机械工程学报, 2023, 59(24): 209-222. |
[11] | 来鑫, 马云杰, 郑岳久, 韩雪冰. 一种基于几何特征变换与迁移的锂离子电池电化学阻抗谱曲线重构方法[J]. 机械工程学报, 2023, 59(22): 140-149. |
[12] | 张雷, 徐同良, 李嗣阳, 程树辉, 丁晓林, 王震坡, 孙逢春. 全线控分布式驱动电动汽车底盘协同控制研究综述[J]. 机械工程学报, 2023, 59(20): 261-280. |
[13] | 邵嗣杨, 马翔, 袁伟, 张开宇, 傅晓飞, 黄晨宏. 含电动汽车的不确定性微电网鲁棒优化调度方法*[J]. 电气工程学报, 2023, 18(2): 201-209. |
[14] | 魏洪乾, 赵文强, 艾强, 张幽彤, 王洪荣, 赖晨光, 邹喜红. 轮毂电机独立驱动电动汽车线性时变模型预测主动安全控制[J]. 机械工程学报, 2023, 59(14): 190-201. |
[15] | 沈童, 殷国栋, 任彦君, 王凡勋, 梁晋豪, 沙文瀚. 考虑轮胎弛豫特性的轮毂电机驱动电动汽车鲁棒自适应驱动防滑控制[J]. 机械工程学报, 2023, 59(14): 222-236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||