• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (5): 343-353.doi: 10.3901/JME.2025.05.343

• 制造工艺与装备 • 上一篇    

扫码分享

航空齿轮齿根磨削和超声滚压表面完整性分布规律研究

党嘉强1, 安庆龙1, 李宇罡2, 明伟伟1, 王浩伟2, 刘忠明3, 陈明1   

  1. 1. 上海交通大学机械系统与振动国家重点实验室 上海 200240;
    2. 上海交通大学金属基复合材料国家重点实验室 上海 200240;
    3. 郑州机械研究所有限公司 郑州 450001
  • 收稿日期:2024-03-24 修回日期:2024-09-09 发布日期:2025-04-15
  • 作者简介:党嘉强,男,1996年出生,博士,助理研究员。主要研究方向为表面完整性创成机理和齿轮抗疲劳制造。E-mail:jqdang@sjtu.edu.cn;陈明(通信作者),男,1966年出生,博士,教授,博士研究生导师。主要研究方向为先进制造工艺与装备、超精密加工与高性能制造。E-mail:mchen@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52305488)。

Study on Surface Integrity Distribution of Tooth Root of Aviation Gear after Profile Grinding and Ultrasonic Rolling Processes

DANG Jiaqiang1, AN Qinglong1, LI Yugang2, MING Weiwei1, WANG Haowei2, LIU Zhongming3, CHEN Ming1   

  1. 1. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240;
    2. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240;
    3. Zhengzhou Research Institute of Mechanical Engineering Co. Ltd., Zhengzhou 450001
  • Received:2024-03-24 Revised:2024-09-09 Published:2025-04-15

摘要: 提出了表面纹理作用下等效初始裂纹长度和应力集中系数评价模型,研究了齿轮成形磨削后齿根表面完整性分布规律,并对成形磨齿参数进行优选讨论。设计搭建了航空齿轮超声滚压强化试验装置,将其应用到齿根强化中,对齿根超声滚压后表面完整性分布规律进行了分析。结果表明,齿根磨削后表面等效初始裂纹长度和应力集中系数分别高达5.09 μm和2.6,表面微观组织变形层深约30 μm,残余压应力层深约30 μm,硬化层深约200 μm。高磨削速度、高进给和小切深有助于减小齿根表面等效裂纹长度,低磨削速度、低进给和小切深有助于提升齿根残余压应力幅值。超声滚压工艺能提高齿根表面光洁度,将等效初始裂纹长度降低至0.28 μm,引入较深塑性变形层,相比磨削加工和机械喷丸工艺,表面残余压应力层深明显提升。

关键词: 超高强度钢, 齿根, 成形磨削, 超声滚压, 表面完整性

Abstract: The evaluation model of equivalent initial microcrack and stress concentration coefficient under the action of surface texture is proposed. The surface integrity distribution of tooth root after profile grinding is investigated and the parameter optimization of grinding process is conducted. A test device for ultrasonic rolling process (USRP) of aviation gear is designed and built, which is applied to the root strengthening, and the surface integrity distribution after USRP is analyzed. The results show that the equivalent initial crack length and stress concentration coefficient of the tooth root reach up to 5.09 μm and 2.6, respectively after profile grinding. The depth of microstructure deformation layer is about 30 μm. The depth of the compressive residual layer and work hardening layer is about 30 μm and 200 μm, respectively. High grinding speed, high feed rate and small cutting depth help to reduce the equivalent crack length and stress concentration coefficient of the root surface while low grinding speed, low feed rate and small cutting depth help to increase the residual stress amplitude. USRP can improve the surface finish of tooth root, reduce the equivalent initial crack length to 0.28 μm, introduce a deeper plastic deformation layer, and significantly increase the depth of compressive residual stress layer compared with grinding and mechanical shot peening processes.

Key words: ultrahigh strength steel, tooth root, profile grinding, ultrasonic rolling, surface integrity

中图分类号: