• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (3): 154-166.doi: 10.3901/JME.2025.03.154

• 特邀专栏:人机联合认知赋能的高端装备设计、制造与运维 • 上一篇    

扫码分享

FCN优化GA的飞行模拟座舱意象仿生视觉焦点预测模型

陈国强1,2,3, 申正义1,2,3, 杨宇驰2,3, 李腾2, 徐丽2   

  1. 1. 燕山大学机械工程学院 秦皇岛 066004;
    2. 燕山大学艺术与设计学院 秦皇岛 066004;
    3. 河北省智能工业设计技术创新中心 秦皇岛 066004
  • 收稿日期:2024-02-11 修回日期:2024-07-29 发布日期:2025-03-12
  • 作者简介:陈国强,男,1975年出生,博士,教授,博士研究生导师。主要研究方向为高端装备创新设计及方法。E-mail:cgq9691@ysu.edn.cn;申正义(通信作者),男,1993年出生,博士,讲师。主要研究方向为特种工程装备设计及方法。E-mail:szy1317@foxmail.com;杨宇驰,男,2000年出生,硕士研究生。主要研究方向为智能装备设计。E-mail:uchiyang@163.com
  • 基金资助:
    河北省在读研究生创新能力培养(CXZZSS2024042)和国家社会科学基金艺术学(21BG125)资助项目。

Flight Simulation Cockpit Imagery Biomimetic Visual Focus Prediction Model Based on FCN-enhanced Genetic Algorithm

CHEN Guoqiang1,2,3, SHEN Zhengyi1,2,3, YANG Yuchi2,3, LI Teng2, XU Li2   

  1. 1. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004;
    2. School of Arts and Design, Yanshan University, Qinhuangdao 066004;
    3. Hebei Intelligent Industrial Design Technology Innovation Center, Qinhuangdao 066004
  • Received:2024-02-11 Revised:2024-07-29 Published:2025-03-12

摘要: 座舱视域认知聚合性较低是影响飞行模拟座舱驾驶训练效率的关键问题之一,对此提出基于全卷积神经网络(Fully convolutional networks,FCN)优化遗传算法(Genetic algorithm,GA)的飞行模拟座舱意象仿生视觉焦点预测模型。首先,依据色格镶嵌的方式结合眼动仪兴趣区域确定座舱视域分区,借助眼动蜂群图及问卷法验证现有座舱认知聚合性。其次,通过数据集筛选和眼动灰度图优化形成仿生设计数据集,训练面向生物、产品、线稿图像的FCN模型。结合FCN模型预测生物外形本征视觉焦点热力图与数字矩阵,计算生物视觉认知评分并将分区按主观认知评分排序,同时建立意象仿生映射关系进行表征分区简图设计表达。最后,借助FCN模型建立适应度函数,利用GA对表征分区简图寻优,解码视觉认知与主观认知匹配最优的座舱因子编码并细化设计,验证设计方案的视觉认知。结果表明,FCN优化GA的预测模型能够提高仿生设计效率,所设计的座舱视域具有较高的认知聚合性,能够显著优化驾驶员对座舱视域主观认知与视觉认知的匹配性。

关键词: 视觉焦点预测, 全卷积神经网络, 飞行模拟座舱, 遗传算法, 意象仿生设计

Abstract: The low cognitive aggregation of cockpit field of view (FOV) is identified as a key issue affecting the efficiency of flight simulation cockpit training. An approach based on fully convolutional networks (FCN) optimized genetic algorithm (GA) is proposed for predicting biomimetic visual focus in cockpit imagery. Firstly, cockpit FOV zones are determined based on grid embedding combined with eye tracker areas of interest, and the existing cockpit cognitive aggregation is validated using eye movement swarm plots and questionnaires. Secondly, a biomimetic design dataset is formed through dataset selection and optimization of eye movement grayscale images, and FCN models are trained for biological, product, and line drawing. Combining the FCN model with predicted inherent visual focus heatmaps and digital matrices of biological shapes, visual cognitive scores are calculated, zones are sorted according to subjective cognitive scores, and a biomimetic mapping relationship is established for expressing schematic designs of characterized zones. Finally, leveraging the FCN model, an adaptability function is established, and GA is utilized for optimizing schematic representations of zones. Decoding the optimal cockpit factors with the best match between visual and subjective cognition, refining the design, and validating the design scheme's visual cognition. The results demonstrate that the FCN-optimized GA model can enhance biomimetic design efficiency, resulting in cockpit FOV designs with higher cognitive aggregation, significantly improving the alignment between drivers' subjective cognition of cockpit FOV and visual cognition.

Key words: visual focus prediction, FCN, flight simulation cockpit, GA, image bionic design

中图分类号: