• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (22): 1-16.doi: 10.3901/JME.2025.22.001

• 仪器科学与技术 • 上一篇    

扫码分享

航空发动机碰摩故障特征及辨识指标构建

周涛1,2, 张维宇3, 王浩4, 刘斌5, 胡明辉1,2, 江志农1,6   

  1. 1. 北京化工大学高端压缩机及系统技术全国重点实验室 北京 100029;
    2. 北京化工大学发动机健康监控及网络化教育部重点实验室 北京 100029;
    3. 空装驻北京地区第六军事代表室 北京 100013;
    4. 中国舰船研究院 北京 100101;
    5. 成都航利(集团)实业有限公司 成都 611936;
    6. 北京化工大学高端机械装备健康监控与自愈化北京市重点实验室 北京 100029
  • 收稿日期:2024-12-10 修回日期:2025-07-01 发布日期:2026-01-10
  • 作者简介:周涛,男,1999年出生,博士研究生。主要研究方向为航空发动机碰摩故障振动特性及诊断方法。E-mail:zhoutao19990914@163.com
    胡明辉(通信作者),男,1990年出生,博士,教授。主要研究方向为航空发动机故障诊断与振动抑制、设备状态检测与健康维护。E-mail:humh2008@163.com
  • 基金资助:
    装备预研教育部联合基金(8091B022203); 国家某重点领域青年人才托举工程(2022-JCJQ-QT-059); 中央高校基本科研业务费专项资金(JD2421)资助项目。

Features and Identification Indicator Construction of Aero-engine Rubbing Faults

ZHOU Tao1,2, ZHANG Weiyu3, WANG Hao4, LIU Bin5, HU Minghui1,2, JIANG Zhinong1,6   

  1. 1. State Key Laboratory of High-end Compressor and System Technology, Beijing University of Chemical Technology, Beijing 100029;
    2. Beijing Key Laboratory of Health Monitoring and Self-recovery for High-end Mechanical Equipment, Beijing University of Chemical Technology, Beijing 100029;
    3. No. 6 Military Representative Office in Beijing Region, Beijing 100013;
    4. China Ship Research and Development Academy, Beijing 100101;
    5. Hangli (Group) Industrial Co., Ltd., Chengdu, Chengdu 611936;
    6. Key Lab of Engine Health Monitoring-control and Networking of Ministry of Education, Beijing University of Chemical Technology, Beijing 100029
  • Received:2024-12-10 Revised:2025-07-01 Published:2026-01-10

摘要: 叶片-机匣碰摩是航空发动机典型故障之一,但是由于设备结构复杂,诊断碰摩故障仍是一个难题。综合考虑机匣振动与叶片振动的影响,设置局部不均匀间隙并改进碰摩力施加方式,通过构建模型研究碰摩故障的振动特性,并利用航空发动机故障模拟试验台验证结论。模型仿真及试验结果表明:碰摩故障会使转子振动中转频幅值下降,同时使机匣振动基频幅值上升;转子与机匣振动频谱中,转频的各个谐波会在碰摩故障中受到不同程度的激励;碰摩故障会显著激励机匣振动中的叶片通过频率。根据模型仿真所得结论,基于机匣振动响应构建碰摩故障辨识指标,数值结果说明了指标对不平衡故障有抗干扰的能力且能够准确反映碰摩故障程度的变化。最后,通过航空发动机试验台数据及外场试飞数据验证了所构建指标的有效性。研究成果可为航空发动机叶片-机匣碰摩故障诊断提供参考。

关键词: 航空发动机, 碰摩故障, 转子, 机匣, 辨识指标

Abstract: Blade-casing rubbing is one of the typical faults in aero-engines, but due to the complex structure of the equipment, diagnosing rubbing faults is still a challenge. Taking into account the effects of casing vibration and blade vibration, setting up non-uniform gaps and improves the application method of rubbing force. A model is constructed to study the vibration characteristics of rubbing faults, and the conclusions are verified through an aero-engine fault simulation test rig. The model simulation and experimental results show that rubbing faults will cause a decrease in the amplitude of the rotor vibration rotational frequency and an increase in the amplitude of the casing vibration rotational frequency; In the vibration spectrum of the rotor and casing, the various harmonics of the rotational frequency will be excited to varying degrees in the rubbing fault; Rubbing faults can also significantly excite the blade passage frequency in the vibration of the casing. Based on the conclusions obtained from model simulation and experiments, a fault identification indicator based on the vibration response of the casing is constructed. The numerical results demonstrate that the indicator have anti-interference ability for unbalance faults and can accurately reflect the changes in the degree of rubbing. Finally, the effectiveness of the constructed indicator was verified through the aero-engine test rig data and test flight data. The research results can provide reference for the diagnosis of blade-casing rubbing faults in the aero-engine.

Key words: aero-engine, rubbing fault, rotor, casing, identification indicator

中图分类号: