• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (20): 204-212.doi: 10.3901/JME.2025.20.204

• 运载工程 • 上一篇    

扫码分享

单线隧道内市域动车组尾车横向晃动机理研究

胡喆1, 池茂儒1, 周亚波1, 代亮成1, 梁树林1, 陈建政1, 孙建锋2   

  1. 1. 西南交通大学轨道交通运载系统全国重点实验室 成都 610031;
    2. 浙江师范大学浙江省城市轨道交通智能运维技术与装备重点实验室 金华 321005
  • 收稿日期:2024-11-05 修回日期:2025-06-16 发布日期:2025-12-03
  • 作者简介:胡喆,男,1998年出生。主要研究方向为车辆系统动力学。E-mail:hzhe1998@126.com
    池茂儒(通信作者),男,1973年出生,博士,研究员,博士研究生导师。主要研究方向为车辆系统动力学。E-mail:cmr2000@163.com
  • 基金资助:
    国家重点研发计划(2018YFB1201701)和国家自然科学基金(52202464)资助项目。

Mechanism of Tail Lateral Sway of City EMUs in Single-track Tunnel

HU Zhe1, CHI Maoru1, ZHOU Yabo1, DAI Liangcheng1, LIANG Shulin1, CHEN Jianzheng1, SUN Jianfeng2   

  1. 1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031;
    2. Key Laboratory of Intelligent Operation and Maintenance Technology and Equipment for Urban Rail Transit of Zhejiang Province, Zhejiang Normal University, Jinhua 321005
  • Received:2024-11-05 Revised:2025-06-16 Published:2025-12-03

摘要: 针对国内某型时速160 km市域动车组在单线隧道内行驶时发生的尾车横向晃动问题,揭示气动力激扰对尾车横向晃动的影响机理,并从车辆悬挂参数优化角度分析抑制尾车晃动的解决措施。根据车辆实际外形及动力学参数,分别建立8编组列车的空气动力学和多体动力学模型,利用重叠网格技术得到列车气动力,将其作为外部激励施加到车体上,进而构建列车流固耦合仿真模型,同时利用根轨迹分析方法掌握车辆悬挂模态和蛇行模态的演变情况,结果表明,单线隧道内,由前至后各节车受到的气动力逐渐增大,头车与尾车的差异非常明显,尾车气动力呈谐波形式,各气动力的主频在0.5~3 Hz范围,与车辆系统本身振动模态接近;车辆的车体上心滚摆和摇头模态分别与转向架同相和反相蛇行运动模态发生振型转变和耦合振动,导致车辆的一次蛇行;气动力中的摇头力矩较大及其主频与整车蛇行运动模态频率耦合共振是造成尾车横向晃动的重要原因;通过车辆悬挂参数优化改变蛇行运动频率或提高阻尼比是缓解尾车晃动的有效措施,降低抗蛇行减振器阻尼系数、提高二系横向减振器阻尼系数、降低一系定位纵向刚度、提高等效锥度、增加车间横向减振器均可一定程度抑制尾车横向晃动,改善运行平稳性和舒适度。

关键词: 市域动车组, 尾车横向晃动, 气动力特性, 流固耦合, 根轨迹分析, 悬挂参数优化

Abstract: Aiming at the lateral sway of the tail car when a domestic type of urban EMU with a speed of 160 km/h is running in a single-track tunnel, the influence mechanism of aerodynamic excitation on the lateral sway of tail car was revealed, and the mitigation measures are studied from the perspective of suspension parameters optimization. According to the actual shape and dynamic parameters of the city EMUs, the aerodynamic and multi-body dynamic models of the 8-car train are established respectively. Overset mesh technique is used to obtain the aerodynamic forces of train, which are applied to the vehicle body as external excitations, and then the fluid-solid coupling simulation model of the train is constructed. And the root locus analysis method is used to grasp the evolution of vehicle suspension modals and hunting modals, the results show that in the single-track tunnel, the aerodynamic forces on each car from front to rear gradually increase, and the difference between the head car and the tail car is very obvious. The aerodynamic forces of the tail car are in the form of harmonics, and the main frequency of each aerodynamic force is in the range of 0.5-3 Hz, which is close to the vibration modals of the vehicle system itself. The upper rolling modal and yawing modal of the vehicle have modal-hopping and coupled resonance with in-phase and out-phase of hunting motion of two bogies respectively, which causes primary serpentine of train. The main frequency of the large yaw aerodynamic moment have the coupling resonance with the hunting modal frequency of the whole vehicle,which is the important reason for the lateral sway of the tail car. Changing the hunting frequency or increasing the damping ratio by optimizing the suspension parameters of vehicle is an effective measure to alleviate the sway of the tail car. Reducing the damping coefficient of the anti-yaw damper, increasing the damping coefficient of the secondary lateral damper, reducing the longitudinal stiffness of the primary, increasing the equivalent conicity, and adding the lateral damper between front and rear cars can relieve the lateral sway of the tail car to a certain extent, and improve the running stability and ride comfort.

Key words: city EMUs, tail lateral sway, aerodynamic characteristics, fluid-solid coupling, root locus analysis, suspension parameters optimization

中图分类号: