• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (17): 114-123.doi: 10.3901/JME.2025.17.114

• 机械动力学 • 上一篇    

扫码分享

面向可信机械故障诊断的模型校准方法

邵海东1, 肖一鸣1, 钟翔1, 韩特2   

  1. 1. 湖南大学机械与运载工程学院 长沙 410082;
    2. 清华大学工业工程系 北京 100084
  • 收稿日期:2024-12-28 修回日期:2025-04-17 发布日期:2025-10-24
  • 作者简介:邵海东(通信作者),男,1990年出生,博士,副教授,博士生导师。主要研究方向为故障诊断与寿命预测,数据挖掘与信息融合。E-mail:hdshao@hnu.edu.cn;肖一鸣,男,1999年出生,博士研究生。主要研究方向为机械智能故障诊断与工业大数据分析。E-mail:xiaoym@hnu.edu.cn
  • 基金资助:
    国家自然科学基金(52275104)、湖南省科技创新计划(2023RC3097)、湖南省研究生科研创新(CX20240031)资助项目。

Model Calibration Method for Trustworthy Mechanical Fault Diagnosis

SHAO Haidong1, XIAO Yiming1, ZHONG Xiang1, HAN Te2   

  1. 1. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082;
    2. Department of Industrial Engineering, Tsinghua University, Beijing 100084
  • Received:2024-12-28 Revised:2025-04-17 Published:2025-10-24

摘要: 现有智能故障诊断研究大多专注于提升准确率,意味着仅由模型制定决策。从安全方面看,这种对模型的过度依赖会导致其即使给出不可信的诊断结果,用户也无从知晓;从伦理方面看,现代人工智能技术缺乏道德指导,相关法律尚未完善,一旦误诊难以追责。一个可靠的诊断模型不仅应尽可能提供准确的结果,还应指出其决策失效的可能性以警示用户。因此,有必要评估结果的可信度来缓解模型失效的风险,实现可信故障诊断。然而,现代深度学习模型往往校准不佳,通常被认为可表征结果可信度的softmax输出与结果正确的真实概率存在失配,致使直接将其作为可信度指标存在显著偏差。为此,提出了一种名为自适应置信度惩罚的校准技术,它能精细地调整施加在每个训练样本上的置信度惩罚强度,进而影响模型所推导的验证/测试样本的softmax概率。该方法弥补了原始置信度惩罚方法使用固定惩罚强度而未考虑样本置信度特性的局限性,进一步提升了校准质量并获得了校准良好的诊断模型。实验结果阐释了设计所提方法的动机并证明了该方法的优越性。

关键词: 模型校准, 置信度估计, 可信人工智能, 旋转机械故障诊断

Abstract: Most existing intelligent fault diagnosis studies focus on improving accuracy, implying that decisions are made only by models. From the safety aspect, this over-reliance on models can lead to users having no way of knowing even if the model gives untrustworthy diagnostic results; from the ethical aspect, the current artificial intelligence (AI) technology lacks moral guidance, and the relevant laws are not yet perfect, so it is difficult to pursue responsibility in case of misdiagnosis. A reliable diagnosis model should not only provide as accurate results as possible, but should also point out the possibility of its decision failure to warn the user. Therefore, it is necessary to assess the confidence of the results to mitigate the risk of model failure and to achieve trustworthy fault diagnosis. However, modern deep learning models are often poorly calibrated, i.e., there is a mismatch between the softmax output, which is often considered to characterize the confidence of the result, and the true probability of the result being correct, leading to a significant bias in using it directly as a confidence level. To this end, we propose a calibration technique called adaptive confidence penalty that fine-tunes the strength of the confidence penalty applied to each training sample, which in turn affects the softmax probability of the validation/testing samples inferred by the model. The method compensates for the limitation of the original confidence penalty method that uses a fixed penalty strength without considering the confidence characteristics of each sample, further improving the calibration quality and obtaining well-calibrated diagnosis models. The experimental results illustrate the motivation for designing the proposed method and demonstrate its superiority.

Key words: model calibration, confidence estimation, trustworthy artificial intelligence, rotating machinery fault diagnosis

中图分类号: