• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (15): 57-81.doi: 10.3901/JME.2025.15.057

• 综述 • 上一篇    

扫码分享

人本智造:人体行为识别关键技术分析与展望

刘庭煜1,2, 翁陈熠1, 王柏村3, 郑湃4, 赵强强5, 王昊琪6, 董元发7, 庄存波8, 冷杰武9, 向峰10, 陈成军11, 周小舟1, 李兴宇12, 焦磊1, 王晓宇1, 倪中华1,2   

  1. 1. 东南大学机械工程学院 南京 211189;
    2. 东南大学南通海洋高等研究院 南通 226010;
    3. 浙江大学机械工程学院 杭州 310058;
    4. 香港理工大学工业及系统工程学系 香港 999077;
    5. 西安交通大学机械工程学院 西安 710049;
    6. 郑州轻工业大学机电工程学院 郑州 450002;
    7. 三峡大学机械与动力学院 宜昌 443002;
    8. 北京理工大学机械与车辆学院 北京 100081;
    9. 广东工业大学省部关建精密电子制造技术与装备国家重点实验室 广州 510006;
    10. 武汉科技大学冶金装备及其控制教育部重点实验室 武汉 430081;
    11. 青岛理工大学机械与汽车工程学院 青岛 266520;
    12. 普渡大学工程技术学院 西拉法叶市 47907 美国
  • 收稿日期:2025-03-18 修回日期:2025-05-23 发布日期:2025-09-28
  • 作者简介:刘庭煜,男,1982年出生,博士,教授,博士研究生导师。主要研究方向为海陆空天重大装备与系统的智能感知与优化决策等理论与工程应用。E-mail:tingyu@seu.edu.cn;翁陈熠,男,1995年出生,博士研究生。主要研究方向为工业人体行为识别及预测;倪中华(通信作者),男,1967年出生,博士,教授,博士研究生导师。主要研究方向为先进制造理论及相关使能技术的集成和应用,微纳医疗器械设计与制造的共性基础科学问题和关键技术。E-mail:nzh2003@seu.edu.cn
  • 基金资助:
    国家自然科学基金(52475514); 碳达峰碳中和科技创新专项(BE2023853); 国家重点研发计划(2020YFB1708403); 国防基础科研重点(JCKY2017204B053)资助项目。

Human-centric Smart Manufacturing: Analysis and Prospects of Human Activity Recognition

LIU Tingyu1,2, WENG Chenyi1, WANG Baicun3, ZHENG Pai4, ZHAO Qiangqiang5, WANG Haoqi6, DONG Yuanfa7, ZHUANG Cunbo8, LENG Jiewu9, XIANG Feng10, CHEN Chengjun11, ZHOU Xiaozhou1, LI Xingyu12, JIAO Lei1, WANG Xiaoyu1, NI Zhonghua1,2   

  1. 1. School of Mechanical Engineering, Southeast University, Nanjing 211189;
    2. Advanced Ocean Institute of Southeast University (Nantong), Nantong 226010;
    3. School of Mechanical Engineering, Zhejiang University, Hangzhou 310058;
    4. Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong 999077;
    5. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049;
    6. School of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002;
    7. College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002;
    8. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081;
    9. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006;
    10. Key Laboratory of Metallurgical Equipment and Control of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081;
    11. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520;
    12. School of Engineering Technology, Purdue University, West Lafayette 47907, USA
  • Received:2025-03-18 Revised:2025-05-23 Published:2025-09-28

摘要: 随着新一代信息技术与制造技术的持续深度融合,以人为中心的智能制造范式正在重塑传统工业生产模式,人体行为识别技术作为实现人本智造的关键使能技术,主要研究人体行为语义的智能识别与理解,展现出广阔应用前景。对工业场景中人体行为识别技术的发展现状、关键挑战与应用前景进行系统探讨,有助于推动人本智造的理论发展与创新实践。首先,以人体行为识别技术的发展脉络为基础,深入分析人体感知、行为建模和行为识别等核心技术的演进过程,为人体行为识别技术的工业化应用奠定技术基础;其次,针对工业场景的特殊需求,重点讨论多模态鲁棒感知系统、多尺度行为理解框架、融合意图理解的人机协同及工业场景的优化部署等关键技术的研究现状;在此基础上,对工业场景人体行为数据集进行系统化分析和质量评估,并重点阐述人体行为识别技术在生产安全管控、生产调度优化、工艺改进和行为改善等典型应用场景的实践进展;最后,结合空间智能、生理认知融合、多模态大语言模型等新兴技术,展望工业人体行为识别技术的未来发展方向。

关键词: 人本智造, 人体行为识别, 多模态数据融合, 空间智能, 人机协作

Abstract: With the continuous deep integration of new generation information technology and manufacturing technology, the human-centric smart manufacturing paradigm is reshaping traditional industrial production models. Human activity recognition technology, as a key enabling technology for implementing human-oriented smart manufacturing, primarily focuses on intelligent recognition and understanding of human activity semantics, which shows broad application prospects. A systematic exploration of the current development status, key challenges, and application prospects of human activity recognition technology in industrial scenarios helps promote theoretical development and innovative practices of human-oriented smart manufacturing. First, based on the developmental trajectory of human activity recognition technology, this study deeply analyzes the evolution process of core technologies such as human perception, activity modeling, and activity recognition, laying the technical foundation for industrial applications of human activity recognition technology; second, focusing on the special requirements of industrial scenarios, it emphasizes research on key technologies including robust multi-modal perception systems, multi-scale activity understanding frameworks, human-machine collaboration with integrated intention understanding, and optimized deployment in industrial scenarios; on this basis, it systematically analyzes and evaluates the quality of human activity datasets in industrial scenarios, and highlights the practical progress of human activity recognition technology in typical application scenarios such as production safety control, production scheduling optimization, process improvement, and activity enhancement; finally, combined with emerging technologies such as spatial intelligence, physiological-cognitive integration, and multi-modal large language models, it envisions future development directions for human activity recognition technology in industrial settings.

Key words: human-centric smart manufacturing, human activity recognition, multimodal data fusion, spatial intelligence, human-robot collaboration

中图分类号: