• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (15): 233-246.doi: 10.3901/JME.2025.15.233

• 人因与具身智能 • 上一篇    

扫码分享

基于人体特征点提取和多维时间序列分类的驾驶行为识别方法

李朝1, 赵霞2, 赵继康1, 付锐1, 王畅1   

  1. 1. 长安大学汽车学院 西安 710064;
    2. 江苏大学汽车工程研究院 镇江 212013
  • 收稿日期:2024-09-17 修回日期:2025-02-09 发布日期:2025-09-28
  • 作者简介:李朝,男,1996年出生,博士研究生。主要研究方向为驾驶人行为建模、智能驾驶、人机共驾。E-mail:2019322001@chd.edu.cn;赵霞,女,1994年出生,博士,讲师。主要研究方向为驾驶人行为建模与分析、智能车辆驾驶决策。E-mail:zhaoxia@ujs.edu.cn;赵继康,男,2000年出生,硕士研究生。主要研究方向为驾驶人行为建模。E-mail:zhaojikang@chd.edu.cn;付锐,女,1965年出生,博士,教授,博士研究生导师。主要研究方向为人机共驾、人-车-路系统安全。E-mail:furui@chd.edu.cn;王畅(通信作者),男,1984年出生,博士,教授,博士研究生导师。主要研究方向为交通安全、智能驾驶、人机交互。E-mail:wangchang@chd.edu.cn
  • 基金资助:
    陕西省重点研发计划(2021LLRH-04-01-01); 江苏省自然科学青年基金(BK20240870); 长安大学中央高校基本科研业务费专项资金(300102224501)资助项目。

Driving Behavior Recognition Based on Human Feature Point Extraction and Multidimensional Time Series Classification

LI Zhao1, ZHAO Xia2, ZHAO Jikang1, FU Rui1, WANG Chang1   

  1. 1. School of Automobile, Chang'an University, Xi'an 710064;
    2. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013
  • Received:2024-09-17 Revised:2025-02-09 Published:2025-09-28

摘要: 驾驶人行为识别对提高驾驶安全性和发展智能交通至关重要。由于不同驾驶环境和驾驶人特征存在较大差异,基于端到端深度学习的驾驶行为识别模型很难在不同数据集下保持较高的泛化性能。针对上述问题,提出基于人体特征点提取和多维时间序列分类的驾驶人行为识别方法。使用YOLOv8和人体姿态估计器蒸馏(Distillation for whole-body pose estimators,DWPose)跟踪驾驶人区域并提取驾驶人人体特征点矩阵。对特征点矩阵进行归一化、平滑和维度转换。分别建立了基于Transformer、Informer、时间卷积神经网络(Temporal convolutional network,TCN)和注意力机制-长短期记忆网络(Attention based long short-term memory,LSTM-Attention)的多维时间序列分类模型。结果表明,Informer模型的识别准确性最高,TCN模型的运行效率最高。当使用Driver-100-Day进行训练时,Informer在Driver-100-Day、Driver-100-Night和State Farm Driver 2数据集上的测试准确度分别为90.82%、88.77%和80.67%,相比于CNN-Transformer提高了24.56%、72.02%和67.57%。所提方法相比于基于单帧图像输入的模型在泛化性能方面有较大的改善,且能够达到较高的识别效率和准确度。

关键词: 智能驾驶, 驾驶行为识别, 人体特征点, 多维时间序列分类, 泛化性能

Abstract: Driver behavior recognition is crucial for both improving driving safety and developing intelligent transportation. Due to the large differences in different driving environments and driver characteristics, it is difficult for driving behavior recognition models based on end-to-end deep learning to maintain high generalization performance under different datasets. To address the above problems, a driver behavior recognition method based on human feature point extraction and multi-dimensional time series classification is proposed. YOLOv8 and distillation for whole-body pose estimators(DWPose) are used to track the driver region and extract the driver human feature point matrix. The feature point matrix is normalized, smoothed and dimensionally transformed. Multidimensional time series classification models based on Transformer, Informer, temporal convolutional neural network(TCN) and attention mechanism-long and short-term memory networks(LSTM-Attention) are established, respectively. The results show that the Informer model has the highest recognition accuracy and the TCN model has the highest operational efficiency. When trained with Driver-100-Day, Informer’s test accuracies on the Driver-100-Day, Driver-100-Night, and State Farm Driver 2 datasets are 90.82%, 88.77%, and 80.67%, respectively, which is higher than that of CNN-Transformer by 24.56%, 72.02% and 67.57%. The proposed method shows a major improvement in generalization compared to the model based on single frame image input and is able to arrive at higher recognition efficiency and accuracy.

Key words: intelligent driving, driving behavior recognition, human feature points, time series classification, generalization performance

中图分类号: