• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (11): 57-71.doi: 10.3901/JME.2025.11.057

• 机器人及机构学 • 上一篇    

扫码分享

基于改进高阶无迹卡尔曼滤波的膝踝康复矫形器预测控制与实验研究

李元1,2, 孙智1, 訾斌1,3, 陈兵1   

  1. 1. 合肥工业大学机械工程学院 合肥 230009;
    2. 浙江大学流体动力基础件与机电系统全国重点实验室 杭州 310027;
    3. 西安电子科技大学机电工程学院 西安 710071
  • 收稿日期:2024-10-24 修回日期:2025-02-19 发布日期:2025-07-12
  • 作者简介:李元,女,1994年出生,博士,副教授。主要研究方向为机器人技术与智能控制,康复机器人。E-mail:yuanli@hfut.edu.cn;訾斌(通信作者),男,1975年出生,博士,教授。主要研究方向为刚柔耦合智能机器人,智能制造系统控制与自动化。E-mail:zibinhfut@163.com
  • 基金资助:
    国家自然科学基金(52205014,U24A20116)、流体动力基础件与机电系统全国重点实验室开放基金课题(GZKF-202321)和中央高校基本科研业务费专项资金(JZ2024HGTB0245)资助项目。

Predictive Control and Experimental Study of Knee Ankle Rehabilitation Orthosis Based on Improved High-order Unscented Kalman Filters

LI Yuan1,2, SUN Zhi1, ZI Bin1,3, CHEN Bing1   

  1. 1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009;
    2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027;
    3. School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071
  • Received:2024-10-24 Revised:2025-02-19 Published:2025-07-12

摘要: 针对康复机器人人机协同运动时的运动行为估计和轨迹跟踪控制问题,提出了一种膝踝康复矫形器力矩估计和模型预测控制算法。首先,建立基于拉格朗日函数和负载方程的机器人关节动力学模型,提出了一种高阶无迹卡尔曼滤波(Unscented Kalman filter, UKF)算法,实现不依靠力矩传感器的关节力矩估计。其次,设计H滤波器降低UKF算法中因不确定性噪声带来的估计误差,提高了估计算法的鲁棒性。然后,改进模型预测控制器,将非线性滤波的后验估计值作为系统的输出反馈,提高了机器人力矩跟踪精度并收敛了误差范围。最后,搭建物理样机进行相关的空载实验和人机协同运动实验,验证了力矩估计方法的准确性和控制算法的有效性。

关键词: 康复机器人, 状态估计, 非线性滤波, 模型预测控制

Abstract: To solve the problems of motion behavior estimation and trajectory tracking control for human-manchine collaborative motion of rehabilitation robots, a torque estimation and model predictive control algorithm for knee ankle rehabilitation orthotics is proposed. Firstly, a robot joint dynamics model based on Lagrange function and load equation is established, and a high-order unscented Kalman filter (UKF) algorithm is proposed to achieve joint torque estimation without relying on torque sensors. Secondly, the H filter is designed to reduce estimation errors caused by uncertain noise in the UKF algorithm and improves the robustness of the estimation algorithm. Then, the model predictive controller is improved by using the posterior estimation value of nonlinear filtering as the output feedback of the system, which improve the accuracy of robot torque tracking and converged the error range. Finally, a physical prototype is constructed for no-load experiments and human-machine collaborative motion experiments, verifying the accuracy of the torque estimation method and the effectiveness of the control algorithm.

Key words: rehabilitation robot, state estimation, nonlinear filtering, model predictive control

中图分类号: