机械工程学报 ›› 2024, Vol. 60 ›› Issue (8): 34-47.doi: 10.3901/JME.2024.08.034
孔玲1, 王玉辉1, 杨浩坤2, 彭艳1
收稿日期:
2023-03-16
修回日期:
2023-10-15
出版日期:
2024-04-20
发布日期:
2024-06-17
作者简介:
孔玲,女,1981年出生,博士,副研究员。主要研究方向为先进金属材料塑性变形及热处理。E-mail:kongling@ysu.edu.cn
基金资助:
KONG Ling1, WANG Yuhui1, Yang Haokun2, PENG Yan1
Received:
2023-03-16
Revised:
2023-10-15
Online:
2024-04-20
Published:
2024-06-17
摘要: 双碳战略催生轻量化材料和技术的蓬勃发展。作为最重要的结构材料之一,钢铁材料在国民经济发展中扮演重要角色。Fe-Mn-Al-C系钢具备优异的轻量化特征、耐腐蚀性、机械强度(抗拉强度600~2 000 MPa)和塑性(伸长率30%~100%)匹配,引起国内外极大关注。其中,奥氏体基低密度钢在综合性能和加工方面具有显著优势,是汽车、交通、军事等领域结构件极具潜力的轻量化先进钢铁材料。对近年来国内外发表的Fe-Mn-Al-C系低密度钢典型使役性能进行总结和分析,着重聚焦其作为结构件应用中的“基本力学性能、加工成形性能和重要服役性能”等方面,综述Fe-Mn-Al-C系奥氏体基低密度钢使役过程中的力学行为、变形特征以及冲击、疲劳和腐蚀等使役评价,归纳阻碍该类钢作为结构件工业应用仍需突破的科学与技术问题,提出未来提高奥氏体基Fe-Mn-Al-C系低密度钢使役性能的重点方向和研究路径,以期为奥氏体基低密度钢作为结构件应用研究提供参考。
中图分类号:
孔玲, 王玉辉, 杨浩坤, 彭艳. Fe-Mn-Al-C系奥氏体基低密度钢使役性能研究进展[J]. 机械工程学报, 2024, 60(8): 34-47.
KONG Ling, WANG Yuhui, Yang Haokun, PENG Yan. Research Situation of Service Performance of Fe-Mn-Al-C Austenitic Low Density Steel[J]. Journal of Mechanical Engineering, 2024, 60(8): 34-47.
[1] FROMMEYER G,BRUX U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels[J]. Steel Research International,2006,77(9-10):627-633. [2] HADFIELD R A. Process of making steel containing Carbon,manganese,and aluminium:US,US422403A[P]. 1890-03-04. [3] HAM J L,CAIRNS R E. Manganese joins aluminum to give strong stainless[J]. Product Engineering,1958,29(52):51-52. [4] DEAN R S,ANDERSON C T. Alloys:US,US2230969A [P]. 1941-02-04. [5] KAYAK G L. Fe-Mn-Al precipitation-hardening austenitic alloys[J]. Metal Science and Heat Treatment,1969,11(2):95-97. [6] KIM Y G,PARK Y S,HAN J K. Low temperature mechanical behavior of microalloyed and controlled-rolled Fe-Mn-Al-CX alloys[J]. Metallurgical Transactions A,1985,16(9):1689-1693. [7] CHARLES J,BERGHEZAN A. Nickel-free austenitic steels for cryogenic applications:The Fe-23% Mn-5% Al-0.2% C alloys[J]. Cryogenics,1981,21(5):278-280. [8] CHARLES J,BERGHEZAN A,LUTTS A. High manganese-aluminum austenitic steels for cryogenic applications,some mechanical and physical properties[J]. Le Journal de Phys. Colloques,1984,45:619-623. [9] FROMMEYER G,DREWES E J,ENGL B. Physical and mechanical properties of iron-aluminium-(Mn,Si) lightweight steels[J]. Revue De Métallurgie,2002,97(10):1245-1253. [10] RAABE D,SPRINGER H,GUTIERREZ-URRUTIA I,et al. Alloy design,combinatorial synthesis and microstructure-property relations for low-density Fe-Mn-Al-C austenitic steels[J]. Journal of Metals,2014,66(9):1845-1856. [11] RAABE D,TASAN C C,SPRINGER H,et al. From high-entropy alloys to high-entropy steels[J]. Steel Research International,2015,86(10):1127-1138. [12] SPRINGER H,RAABE D. Rapid alloy prototyping:Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels[J]. Acta Materialia,2012,60(12):4950-4959. [13] SEOL J B,RAABE D,CHOI P,et al. Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe-Mn-Al-C alloy studied by transmission electron microscopy and atom probe tomography[J]. Scripta Materialia,2013,68(6):348-353. [14] YAO M J,DEY P,SEOL J B,et al. Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of . -carbides in an austenitic Fe-Mn-Al-C low density steel[J]. Acta Materialia,2016,106:229-238. [15] GUTIERREZ-URRUTIA I,RAABE D. High strength and ductile low density austenitic FeMnAlC steels:Simplex and alloys strengthened by nanoscale ordered carbides[J]. Materials Science and Technology,2014,30:1099-1104. [16] GUTIERREZ-URRUTIA I,RAABE D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels[J]. Scripta Materialia,2013,68:343-347. [17] GUTIERREZ-URRUTIA I,RAABE D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel[J]. Acta Materialia,2012,60(16):5791-5802. [18] YAO M J,WELSCH E,PONGE D,et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel[J]. Acta Materialia,2017,140:258-273. [19] WELSCH E,PONGE D,HAGHIGHAT S M H,et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel[J]. Acta Materialia,2016,116:188-199. [20] 章小峰,杨浩,李家星,等. 基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型[J]. 材料导报,2018,32(8):2859-2864. ZHANG Xiaofeng,YANG Hao,LI Jiaxing,et al. The stacking fault energy (SFE) calculation model for Fe-Mn-Al-C low-density steels based on thermodynamics theory[J]. Materials Review,2018,32(8):2859-2864. [21] 张明达,胡春东,曹文全,等. 基于Thermo-Calc的中锰中铝Fe-Mn-Al-C低密度钢类Schaeffler相图绘制与评估[J]. 工程科学学报,2016,38(5):682-690. ZHANG Mingda,HU Chundong,CAO Wenquan,et al. Plotting and evaluation on the Schaeffler diagram of Fe-Mn-Al-C low-density alloys with medium manganese and aluminum contents based on Thermo-Calc software[J]. Chinese Journal of Engineering,2016,38(5):682-690. [22] 刘德罡,胡小龙,蔡明晖,等. Fe-11Mn-10Al-0.9C低密度钢的变形抗力模型和热加工图[J]. 材料与冶金学报,2018,17(4):263-269. LIU Degang,HU Xiaolong,CAI Minghui,et al. Deformation resistance model and processing map of Fe-11Mn-10Al-0.9C low density steel[J]. Journal of Materials and Metallurgy,2018,17(4):263-269. [23] 彭伟. Fe-Mn-Al-C双相轻质钢成分设计、性能及相变行为研究[D]. 上海:上海大学,2013. PENG Wei. Composition design,properties and phase transformation behavior of Fe-Mn-Al-C duplex lightweight steels[D]. Shanghai:Shanghai University,2013. [24] 丁桦,胡晓. 高层错能Fe-Mn-Al-C低密度钢的变形机制和组织控制[J]. 材料与冶金学报,2018,17(4):239-244. DING Hua,HU Xiao. Deformation mechanisms and microstructure control in Fe-Mn-Al-C steels with high stacking fault energies[J]. Journal of Materials and Metallurgy,2018,17(4):239-244. [25] CHENG W C,JAW J H,WANG C J. A study of aluminum nitride in a Fe-Mn-Al-C alloy[J]. Scripta Materialia,2004,51(4):279-283. [26] CHENG W C. Formation of a new phase after high-temperature annealing and air cooling of an Fe-Mn-Al alloy[J]. Metallurgical and Materials Transactions A,2005,36(7):1737-1743. [27] CHENG W C,JAW J H,WANG C J. Growing ledge structures of AlN crystals in a Fe-Mn-Al-C alloy[J]. Scripta Materialia,2004,51(12):1141-1145. [28] KIM H,SUH D W,KIM N J. Fe-Al-Mn-C lightweight structural alloys:A review on the microstructures and mechanical properties[J]. Science and Technology of Advanced Materials,2013,14(1):014205. [29] RANA R,LAHAYE C,RAY R K. Overview of lightweight ferrous materials:Strategies and promises[J]. Jom,2014,66(9):1734-1746. [30] CHEN S,RANA R,HALDAR A,et al. Current state of Fe-Mn-Al-C low density steels[J]. Progress in Materials Science,2017,89:345-391. [31] GUTIERREZ-URRUTIA I. Low density Fe-Mn-Al-C steels:Phase structures,mechanisms and properties[J]. ISIJ International,2021,61(1):16-25. [32] 满廷慧,彭伟,王子波,等. Fe-Mn-Al-C低密度钢研究现状及展望[J]. 中国冶金,2022,32(1):11-20. MAN Tinghui,PENG Wei,WANG Zibo,et al. Research progress and prospect of Fe-Mn-Al-C low-density steels[J]. China Metallurgy,2022,32(1):11-20. [33] 刘春泉,彭其春,薛正良,等. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报,2019,33(15):2572-2581. LIU Chunquan,PENG Qichun,XUE Zhengliang,et al. Research situation of Fe-Mn-Al-C system low-density high-strength steel[J]. Materials Review,2019,33(15):2572-2581. [34] 张磊峰,宋仁伯,赵超,等. 新型汽车用钢——低密度高强韧钢的研究进展[J]. 材料导报,2014,28(19):111-118. ZHANG Leifeng,SONG Renbo,ZHAO Chao,et al. Research progress of new automotive steel-low-density high strength-toughness steel[J]. Materials Review,2014,28(19):111-118. [35] 王英虎. 汽车用高强韧Fe-Mn-Al-C系低密度钢研究进展[J]. 铸造技术,2019(8):868-873. WANG Yinghu. Research progress of Fe-Mn-Al-C low density steel with high strength and toughness for automobile[J]. Foundry Technology,2019(8):868-873. [36] 王英虎. Fe-Mn-Al-C系低密度钢开发中数值模拟的应用[J]. 特殊钢,2022,43(1):22-28. WANG Yinghu. Application of numerical simulation during development of Fe-Mn-Al-C low density steel[J]. Special Steel,2022,43(1):22-28. [37] 王凤权,孙挺,王毛球,等. Fe-Mn-Al-C系奥氏体基低密度钢的研究进展[J]. 钢铁,2021,56(6):89-102. WANG Fengquan,SUN Ting,WANG Maoqiu,et al. Research progress of Fe-Mn-Al-C system austenitic low density steel[J]. Iron & Steel,2021,56(6):89-102. [38] ZHANG J,RAABE D,TASAN C C. Designing duplex,ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics[J]. Acta Materialia,2017,141:374-387. [39] KIM S H,KIM H,KIM N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility[J]. Nature,2015,518(7537):77-79. [40] PARK G,NAM C H,ZARGARAN A,et al. Effect of B2 morphology on the mechanical properties of B2-strengthened lightweight steels[J]. Scripta Materialia,2019,165:68-72. [41] HWANG J H,TRANG T T T,LEE O,et al. Improvement of strength-ductility balance of B2-strengthened lightweight steel[J]. Acta Materialia,2020,191:1-12. [42] 林方敏,邢梅,唐立志,等. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报,2023,37(5):1-7. LIN Fangmin,XING Mei,TANG Lizhi,et al. Research progress of Fe-Mn-Al-C low-density steels and their strengthening mechanisms[J]. Materials Review,2023,37(5):1-7. [43] ZHI H,LI J,LI W,et al. Simultaneously enhancing strength-ductility synergy and strain hardenability via Si-alloying in medium-Al FeMnAlC lightweight steels[J]. Acta Materialia,2023,245:118611. [44] PARK K T. Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature[J]. Scripta Materialia,2013,68(6):375-379. [45] YOO J D,PARK K T. Microband-induced plasticity in a high Mn-Al-C light steel[J]. Materials Science and Engineering:A,2008,496(1-2):417-424. [46] 章小峰,李家星,万亚雄,等. 低密度钢中有序析出相的研究进展[J]. 材料导报,2019,33(23):3979-3989. ZHANG Xiaofeng,LI Jiaxing,WAN Yaxiong,et al. Research progress of ordered precipitates in low-density steels[J]. Materials Review,2019,33(23):3979-3989. [47] KUSAKIN P S,TSUZAKI K,MOLODOV D A,et al. Advanced thermomechanical processing for a high-Mn austenitic steel[J]. Metallurgical and Materials Transactions A,2016,47(12):5704-5708. [48] KUSAKIN P S,KAIBYSHEV R O. High-Mn twinning-induced plasticity steels:Microstructure and mechanical properties[J]. Reviews on Advanced Materials Science,2016,44(4):326-360. [49] YANG H K,ZHANG Z J,ZHANG Z F. Comparison of work hardening and deformation twinning evolution in Fe-22Mn-0.6C-1.5Al twinning-induced plasticity steels[J]. Scripta Materialia,2013,68(12):992-995. [50] TIAN X,TIAN R,WEI X,et al. Effect of al content on work hardening in austenitic Fe-Mn-Al-C alloys[J]. Canadian Metallurgical Quarterly,2004,43(2):183-192. [51] CHIN K G,KANG C Y,SHIN S Y,et al. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels[J]. Mater. Sci. Eng.,2011,528:2922-2928. [52] SUTOU Y,KAMIYA N,UMINO R,et al. High-strength Fe-20Mn-Al-C-based alloys with low density[J]. ISIJ International,2010,50(6):893-899. [53] 韩志强,董丹阳,刘杨,等. 光纤激光焊接950MPa级车用TWIP钢接头组织和性能[J]. 焊接学报,2018,39(5):63-68. HAN Zhiqiang,DONG Danyang,LIU Yang,et al. Microstructure and properties of 950 MPa automotive TWIP Steel joint welded by fiber laser[J]. Transactions of the China Welding Institution,2018,39(5):63-68. [54] KIM B Y,JEONG S,KIM B Y,et al. Local brittle cracking in the heat-affected zone of light weight steels[J]. Materials Chemistry and Physics,2019,238:1-8. [55] 谢盼. Fe-Mn-Al-Si系TRIP/TWIP钢激光焊接及其接头的组织性能研究[D]. 长沙:湖南大学,2013. XIE Pan. Study on laser welding of Fe-Mn-Al-Si TRIP/TWIP steels and microstructure and properties of welded joint[D]. Changsha:Hunan University,2013. [56] 马丽莉. 孪晶诱发塑性(TWIP)钢激光焊接接头的组织与性能研究[D]. 太原:太原理工大学,2015. MA Lili. Microstructure and properties of laser beam welded twinning induced Plasticity (TWIP) steel[D]. Taiyuan:Taiyuan University of Technology,2015. [57] 胡士廉,马良超,马冰,等. Fe-Mn-Al-C系低密度钢焊接性能研究[J]. 兵器材料科学与工程,2018,41(4):1-4. HU Shilian,MA Liangchao,MA Bing,et al. Weldability of Fe-Mn-Al-C low density steel[J]. Ordnance Material Science and Engineering,2018,41(4):1-4. [58] CHOU C P,LEE C H. Effect of carbon on the weldability of Fe-Mn-Al alloys[J]. Journal of Materials Science,1990,25(2):1491-1496. [59] JIN Fengyin. Weldability of austenitic Fe-Mn-Al-C lightweight steels[D]. Seoul:Hanyang University,2020. [60] KU J S,HO N J,Tjong S C. Properties of electron-beam-welded and laser-welded austenitic Fe-28Mn-5Al-1C alloy[J]. Journal of Materials Science,1993,28(10):2808-2814. [61] RANA R,LOISEAUX J,LAHAIJE C. Microstructure,mechanical properties and formability of a duplex steel[J]. Materials Science Forum,2012,706:2271-2277. [62] LEY N A,YOUNG M L,Hornbuckle B C,et al. Toughness enhancing mechanisms in age hardened Fe-Mn-Al-C steels[J]. Materials Science and Engineering A,2021,820(5):141518. [63] ZHANG X F,LI J X,YANG Y,et al. Austenite stability and cryogenic impact toughness of a lamellar Fe-Mn-Al-C lightweight structural steel subjected to quenching and tempering process[J]. Journal of Materials Engineering and Performance,2022,31(7):5259-5268. [64] WANG Y,ZHANG Y,GODFREY A ,et al. Cryogenic toughness in a low-cost austenitic steel[J]. Communications Materials,2021,2(1):44. [65] SAXENA V K,KRISHNA M S G,CHHAUNKER P S,et al. Fatigue and fracture behavior of a nickel-chromium free austenitic steel[J]. International Journal of Pressure Vessels and Piping,1994,60(2):151-157. [66] KALASHNIKOV I S,ACSELRAD O,PEREIRA L C,et al. Behavior of Fe-Mn-Al-C steels during cyclic tests[J]. Journal of Materials Engineering and Performance,2000,9(3):334-337. [67] CHANG S C ,HSIAU Y H ,JAHN M T. Tensile and fatigue properties of Fe-Mn-Al-C alloys[J]. Journal of Materials Science,1989,24(3):1117-1120. [68] HO N J,WU L T,TJONG S C. Cyclic deformation of duplex Fe-30Mn-10Al-0.4C alloy at room temperature[J]. Materials Science & Engineering A,1988,102(1):49-55. [69] HO N J,TJONG S C. Cyclic stress-strain behaviour of austenitic Fe-29.7Mn-8.7A1-1.04C alloy at room temperature[J]. Materials Science and Engineering,1987,94:195-202. [70] SONG S W,KWON Y J,LEE T,et al. Effect of Al addition on low-cycle fatigue properties of hydrogen-charged high-Mn TWIP steels[J]. Materials Science and Engineering:A,2016,677:421-430. [71] CHRISTODOULOU P I,KERMANIDIS A T,KRIZAN D. Fatigue behavior and retained austenite transformation of Al-containing TRIP steels[J]. International Journal of Fatigue,2016,91:220-231. [72] XU C,PETROV R,ZHAO L,et al. Fatigue crack growth in TRIP steel under positive R-ratios[J]. Engineering Fracture Mechanics,2008,75(3-4):739-749. [73] HAIDEMENOPOULOS G N,KERMANIDIS A,MALLIAROS C,et al. On the effect of austenite stability on high cycle fatigue of TRIP 700 steel[J]. Materials Science & Engineering A,2013,573:7-11. [74] HAMADA A S,KARJALAINEN L. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels[J]. Materials Science & Engineering A,2010,527(21-22):5715-5722. [75] SHYAMAL S,DAS S R,JASKARI M,et al. Graded deformation in an Fe-Mn-Al-C steel under bending fatigue[J]. Materials Letters,2020,285:129002. [76] MA P,QIAN L,MENG J,et al. Influence of Al on the fatigue crack growth behavior of Fe-22Mn-(3Al)-0.6C TWIP steels[J]. Materials Science and Engineering:A,2015. 645:136-141. [77] LI H,ZHAO J,WANG Z,et al. Effect of heat treatment on cyclic deformation properties of Fe-26Mn-10Al-C steel[J]. Journal of Iron and Steel Research International,2019,26(2):200-210. [78] 侯阿龙. 高锰高铝低密度钢的腐蚀行为及机理研究[D]. 马鞍山:安徽工业大学,2018. HOU Along. Study on corrosion behavior and mechanism in high-manganese high-aluminum low density steel[D]. Ma’anshan:Anhui University of Technology,2018. [79] TJONG S C. SEM,EDX and XRD studies of the scales formed on the Fe-Mn-Al-C system in oxidizing- sulphidizing environments[J]. X-Ray Spectrometry,1991,20(5):225-238. [80] PEREZ P,PEREZ F J,GOMEZ C. Oxidation behaviour of an austenitic Fe-30Mn-5Al-0.5C alloy[J]. Corrosion Science,2002,44(1):113-127. [81] HUANG Z,JIANG Y,HOU A,et al. Rietveld refinement,microstructure and high-temperature oxidation characteristics of low-density high manganese steels[J]. Journal of Materials Science & Technology,2017,33(12):1531-1539. [82] GAU Y J,WU J K. Galvanic corrosion behaviour of Fe-Mn-Al alloys in sea water[J]. Journal of Materials Science Letters,1992,11(2):119-121. [83] CAVALLINI M,FELLI F,FRATESI R,et al. Aqueous solution corrosion behaviour of “poor man” high manganese-aluminum steels[J]. Materials and Corrosion,1982,33(5):281-284. [84] TUAN Y H,WANG C S,TSAI C Y,et al. Corrosion behaviours of austenitic Fe-30Mn-7Al-xCr-1C alloys in 3.5% NaCl solution[J]. Mater. Chem. Phys.,2009,114(2):595-598. [85] ZHU X M,ZHANG Y S. An XPS study of passive film formation on Fe30Mn9Al alloy in sodium sulphate solution[J]. Applied Surface Science,1998,125(1):11-16. [86] ABUZRIBA M B,MUSA S M. Substitution for chromium and nickel in Austenitic stainless steels[C]//2nd International Multidisciplinary Microscopy and Microanalysis Congress:Proceedings of InterM,October 16-19,2014. Springer International Publishing,2015:205-214. [87] TJONG S C. Stress corrosion cracking of the austenitic Fe-Al-Mn alloy in chloride environment[J]. Materials and Corrosion,1986,37(8):444-447. [88] TJONG S C,WU C S. The microstructure and stress corrosion cracking behaviour of precipitation-hardened Fe-8.7Al-29.7Mn-1.04C alloy in 20% NaCl solution[J]. Materials Science and Engineering,1986,80(2):203-211. [89] CHANG S C,LIU J Y,JUANG H K. Environment-assisted cracking of Fe-32%Mn-9%Al alloys in 3.5% sodium chloride solution[J]. Corrosion,1995,51(5):399-406. |
[1] | 任志英, 黄子豪, 方荣政, 王秦伟, 莫继良, 秦红玲. 金属橡胶无序式网格互穿结构的热力学性能研究[J]. 机械工程学报, 2024, 60(8): 165-175. |
[2] | 陈伟, 赵杰, 朱利斌, 曹海波. 增材制造低活化钢研究现状及展望[J]. 机械工程学报, 2024, 60(7): 312-333. |
[3] | 郑洋, 赵梓昊, 刘伟, 余政哲, 牛伟, 雷贻文, 孙荣禄. 高性能镁合金增材制造技术研究进展[J]. 机械工程学报, 2024, 60(7): 385-400. |
[4] | 刘振宇, 张楠, 裘辿, 谭建荣. 基于小样本数据增广的产品服役性能预测方法[J]. 机械工程学报, 2024, 60(6): 11-20. |
[5] | 鲍鑫宇, 麻永林, 程桥, 苏怡卉, 王杰, 邢淑清. 脉冲磁场熔体处理对Al-Si-Mg-Cu-Ni合金DC铸造凝固组织和力学性能的影响[J]. 机械工程学报, 2024, 60(6): 279-286. |
[6] | 周甜, 蔡力勋, 韩光照. 用于延性材料力学性能测定的圆柱平面-小冲杆试验新方法与应用[J]. 机械工程学报, 2024, 60(4): 316-325. |
[7] | 高强, 王健, 张严, 郑旭阳, 吕昊, 殷国栋. 拓扑优化方法及其在运载工程中的应用与展望[J]. 机械工程学报, 2024, 60(4): 369-390. |
[8] | 唐九兴, 石磊, 武传松, 吴明孝, 高嵩. 中厚板铝/铜异种金属双面搅拌摩擦接头微观组织与力学性能[J]. 机械工程学报, 2024, 60(20): 88-98. |
[9] | 林智雄, 邵震, 梁鑫裕, 崔雷, 王东坡, 谢燕, 黄一鸣, 杨立军. 2219铝合金拉拔式摩擦塞补焊成形过程分析[J]. 机械工程学报, 2024, 60(20): 144-152. |
[10] | 黄浩, 单忠德, 张丽娇, 孙正, 郭子桐, 刘检华, 金鹏. 异形截面复合材料构件成形及力学性能预测方法研究[J]. 机械工程学报, 2024, 60(2): 107-118. |
[11] | 高恺, 顾红历, 李坤. Cr、Si微量元素对钢/铝感应静压焊接接头组织及性能的影响[J]. 机械工程学报, 2024, 60(2): 178-187. |
[12] | 马翔宇, 郑讯佳, 何造. 基于最小作用量原理的多孔结构性能映射关系[J]. 机械工程学报, 2024, 60(19): 250-260. |
[13] | 张家豪, 王磊磊, 张彦霄, 黎一帆, 王晓明, 占小红. 激光熔化沉积TiC/TC4功能梯度材料微观组织与拉伸性能研究[J]. 机械工程学报, 2024, 60(19): 356-366. |
[14] | 王瑞林, 杨新岐, 唐文珅, 罗庭. AA2024-T3铝合金搅拌摩擦沉积增材组织及性能[J]. 机械工程学报, 2024, 60(18): 146-153. |
[15] | 张明康, 师文庆, 徐梅珍, 王迪, 陈杰. 隐式曲面多孔结构压缩性能与流体压降性能研究[J]. 机械工程学报, 2024, 60(18): 394-406. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||