• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (7): 385-400.doi: 10.3901/JME.2024.07.385

• 制造工艺与装备 • 上一篇    下一篇

扫码分享

高性能镁合金增材制造技术研究进展

郑洋1,2,3, 赵梓昊2,4, 刘伟5, 余政哲3, 牛伟2,4, 雷贻文2,4, 孙荣禄2,4   

  1. 1. 天津工业大学航空航天学院 天津 300387;
    2. 天津市现代化机电装备技术重点实验室 天津 300387;
    3. 中国民航科技产业化基地 天津 300308;
    4. 天津工业大学机械工程学院 天津 300387;
    5. 中国航发北京航空材料研究院3D打印研究与工程技术中心 北京 100095
  • 收稿日期:2023-04-08 修回日期:2023-11-04 出版日期:2024-04-05 发布日期:2024-06-07
  • 通讯作者: 郑洋,男,1988年出生,博士,讲师,硕士研究生导师。主要研究方向为金属增材制造技术。E-mail:zhengyang@tiangong.edu.cn
  • 作者简介:赵梓昊,男,1998年出生,硕士研究生。主要研究方向为镁合金激光选区熔化增材制造技术。E-mail:1915562564@qq.com
  • 基金资助:
    天津市自然科学基金(19JCQNJC02800)和国家自然科学基金(52175369)资助项目。

Research Progress in High-performance Mg Alloys Prepared by Additive Manufacturing

ZHENG Yang1,2,3, ZHAO Zihao2,4, LIU Wei5, YU Zhengzhe3, NIU Wei2,4, LEI Yiwen2,4, SUN Ronglu2,4   

  1. 1. School of Aeronautics and Astronautics, Tiangong University, Tianjin 300387;
    2. Tianjin Area Major Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387;
    3. China Civil Aviation Science and Technology Industrialization Base, Tianjin 300308;
    4. School of Mechanical Engineering, Tiangong University, Tianjin 300387;
    5. 3D Printing Research & Engineering Technology Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095
  • Received:2023-04-08 Revised:2023-11-04 Online:2024-04-05 Published:2024-06-07

摘要: 镁合金在航空航天、轨道交通、新能源、生物医用等领域具有广阔应用前景,增材制造技术(Additive manufacturing)的发展为成形复杂结构的高性能镁合金构件提供了可能。然而,镁合金熔沸点低、蒸气压高、氧化性强的特点易使增材制造构件内部形成孔隙、裂纹、夹杂物等缺陷,导致增材制造镁合金的应用水平远远落后于高温合金、铝合金、钛合金等材料,开发适用于镁合金的增材制造技术并通过材料改性与工艺优化减少冶金缺陷是突破增材制造镁合金应用瓶颈的关键。镁合金增材制造技术主要有激光选区熔化(Selective laser melting, SLM)、电弧增材制造(Wire arc additive manufacturing, WAAM)以及搅拌摩擦增材制造(Friction stir additive manufacturing, FSAM)和搅拌摩擦沉积增材(Additive friction stir deposition, AFSD)。通过归纳梳理镁合金增材制造技术的研究现状与技术进展,总结了镁合金在不同增材制造技术成形过程中的数值模拟研究结果,对比分析了不同增材制造技术关键工艺参数对镁合金构件组织结构和力学性能的影响,并对镁合金增材制造技术未来的研究重点进行了展望。

关键词: 增材制造, 镁合金, 数值模拟, 微观组织, 力学性能

Abstract: Mg alloys have broad application prospects in aerospace, rail transit, new energy, biomedical and other fields. The development of additive manufacturing (AM) technologies has made it possible to form high-performance Mg alloys with complex structures. However, the characteristics of low melting and boiling points, high vapor pressure as well as strong oxidation activity of Mg alloys usually lead to the formation of pores, cracks, inclusions and other defects in the AM-prepared components, which results in the application level of AM-prepared Mg alloys far behind the superalloys, Al alloys, Ti alloys and other materials. Therefore, exploring more suitable AM technologies for Mg alloys and reducing their defects via material modification and process optimization are key solutions to break through the application bottlenecks of AM-prepared Mg alloys. The main AM technologies for Mg alloys include selective laser melting (SLM), wire arc additive manufacturing (WAAM), friction stir additive manufacturing (FSAM) and additive friction stir deposition (AFSD). The research status and technical progress of AM technologies for Mg alloys are reviewed. The numerical simulation results of Mg alloys forming process during different AM technologies are summarized. The effects of key processing parameters of different AM technologies on microstructures and mechanical properties of Mg alloys are comparatively analyzed. The future research directions of AM technologies for Mg alloys are also prospected.

Key words: additive manufacturing, Mg alloys, numerical modeling, microstructure, mechanical properties

中图分类号: