[1] XU T C,YANG Y,PENG X D,et al. Overview of advancement and development trend on magnesium alloy[J]. Journal of Magnesium and Alloys,2019,7(3):536-544. [2] ZHENG Y,MA Y L,ZANG L B,et al. Microstructure,corrosion behavior,and surface mechanical properties of Fe oxide coatings on biomedical ZK60 Mg alloy[J]. Materials and Corrosion,2019,70(12):2292-2302. [3] LI N,YAN H,WU Q,et al. Fabrication of carbon nanotubes and rare earth Pr reinforced AZ91 composites by powder metallurgy[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-10. [4] ZHENG Y,ZANG L B,BI Y Z,et al. Corrosion behavior of Fe/Zr composite coating on ZK60 Mg alloy by ion implantation and deposition[J]. Coatings,2018,8(8):261-272. [5] YANG Y,XIONG X M,CHEN J,et al. Research advances in magnesium and magnesium alloys worldwide in 2020[J]. Journal of Magnesium and Alloys,2021,9(3):705-747. [6] KARUNAKARAN R,ORTGIES S,TAMAYOL A,et al. Additive manufacturing of magnesium alloys[J]. Bioactive Materials,2020,5(1):44-54. [7] 李祺祺,温耀杰,张百成,等. 梯度功能合金的增材制造技术研究进展[J]. 机械工程学报,2021,57(22):184-200. LI Qiqi,WEN Yaojie,ZHANG Baicheng,et al. Research progress of functional graded alloy prepared by additive manufacturing technology[J]. Journal of Mechanical Engineering,2021,57(22):184-200. [8] KOONS G L,DIBA M,MIKOS A G. Materials design for bone-tissue engineering[J]. Nature Reviews Materials,2020,5(8):584-603. [9] LI N,LIU W,WANG Y,et al. Laser additive manufacturing on metal matrix composites:A review[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-16. [10] 刘伟,李能,周标,等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报,2019,55(20):128-151,159. LIU Wei,LI Neng,ZHOU Biao,et al. Progress in additive manufacturing of complex structures and high- performance materials[J]. Journal of Mechanical Engineering,2019,55(20):128-151,159. [11] JIA H,SUN H,WANG H,et al. Scanning strategy in selective laser melting (SLM):A review[J]. The International Journal of Advanced Manufacturing Technology,2021,113(9):2413-2435. [12] WANG Z L,ZHANG Y B. A review of aluminum alloy fabricated by different processes of wire arc additive manufacturing[J]. Materials Science-Medziagotyra,2021,27(1):18-26. [13] CHEN C,LIN S B,FAN C L,et al. Feasibility analysis of pulsed ultrasonic for controlling the GMAW process and weld appearance[J]. International Journal of Advanced Manufacturing Technology,2018,97(9):3619-3624. [14] SHARMA P,DWIVEDI D K. Comparative study of activated flux-GTAW and multipass-GTAW dissimilar P92 steel-304H ASS joints[J]. Materials and Manufacturing Processes,2019,34(11):1195-1204. [15] DEREKAR K S,ADDISON A,JOSHI S S,et al. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium[J]. The International Journal of Advanced Manufacturing Technology,2020,107(1):311-331. [16] YU H Z,MISHRA R S. Additive friction stir deposition:A deformation processing route to metal additive manufacturing[J]. Materials Research Letters,2021,9(2):71-83. [17] JORDON J B,ALLISON P G,PHILLIPS B J,et al. Direct recycling of machine chips through a novel solid-state additive manufacturing process[J]. Materials & Design,2020,193:108850. [18] 石磊,李阳,肖亦辰,等. 基于搅拌摩擦的金属固相增材制造研究进展[J]. 材料工程,2022,50(1):1-14. SHI Lei,LI Yang,XIAO Yichen,et al. Research progress in the manufacturing of metal solid phase additive based on mixing and friction[J]. Journal of Materials Engineering,2022,50(1):1-14. [19] UNOCIC R R,DUPONT J N. Process efficiency measurements in the laser engineered net shaping process[J]. Metallurgical and Materials Transaction B,2004,35(1):143-152. [20] PIERRON N,SALLAMAND P,MATTEÏS. Study of magnesium and aluminum alloys absorption coefficient during Nd:YAG laser interaction[J]. Applied Surface Science,2007,253(6):3208-3214. [21] DING D H,PAN Z X,CUIURI D,et al. Wire-feed additive manufacturing of metal components:Technologies,developments and future interests[J]. The International Journal of Advanced Manufacturing Technology. 2015,81(1):465-481. [22] BRASZCZYŃKA-MALIK K N,MRÓZ M. Gas-tungsten arc welding of AZ91 magnesium alloy[J]. Journal of Alloys and Compounds,2011,509(41):9951-9958. [23] PHILLIPS B J,MASON C J T,BECK S C,et al. Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al-Mg-Si alloy fabricated by additive friction stir deposition[J]. Journal of Materials Processing Technology,2021,295:117169. [24] ESMAILY M,ZENG Z,MORTAZAVI A N,et al. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting[J]. Additive Manufacturing,2020,35:101321. [25] YANG X,LIU J,WANG Z,et al. Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process[J]. Materials Science and Engineering A,2020,774:138942. [26] WLODARSKI S,AVERY D Z,WHITE B C,et al. Evaluation of grain refinement and mechanical properties of additive friction stir layer welding of AZ31 magnesium alloy[J]. Journal of Materials Engineering and Performance,2021,30(2):964-972. [27] WILLIAMS M B,ROBINSON T W,WILLIAMSON C J,et al. Elucidating the effect of additive friction stir deposition on the resulting microstructure and mechanical properties of magnesium alloy WE43[J]. Metals,2021,11(11):1739. [28] GUO S,REN G,ZHANG B. Subsurface defect evaluation of selective-laser-melted Inconel 738LC alloy using eddy current testing for additive/subtractive hybrid manufacturing[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-16. [29] 贺鹏飞,魏正英,杜军,等. 铝合金熔滴复合电弧沉积同步WC颗粒强化增材制造工艺研究[J]. 机械工程学报,2022,58(5):258-267. HE Pengfei,WEI Zhengying,DU Jun,et al. Investigation of droplet + arc deposition additive manufacturing with WCP simultaneous reinforcement for aluminum alloy[J]. Journal of Mechanical Engineering,2022,58(5):258-267. [30] GUO S,DU W,JIANG Q,et al. Surface integrity of ultrasonically-assisted milled Ti6Al4V alloy manufactured by selective laser melting[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-14. [31] PAN A Q,ZHANG H,WANG Z M,et al. Progress parameters and microstructure of Ni-based single crystal superalloy processed by selective laser melting[J]. Chinese Journal of Lasers,2019,46(11):138-144. [32] LIU Y,YANG Y,WANG D. A study on the residual stress during selective laser melting (SLM) of metallic powder[J]. The International Journal of Advanced Manufacturing Technology,2016,87(1):647-656. [33] HE P D,WEBSTER R F,YAKUBOV V,et al. Fatigue and dynamic aging behavior of a high strength Al-5024 alloy fabricated by laser powder bed fusion additive manufacturing[J]. Acta Materialia,2021,220:117312. [34] DEBROY T,MUKHERJEE T,WEI H L,et al. Metallurgy,mechanistic models and machine learning in metal printing[J]. Nature Reviews Materials,2020,6(1):48-68. [35] SHEN H Y,YAN J W,NIU X M. Thermo-Fluid-Dynamic modeling of the melt pool during selective laser melting for AZ91D magnesium alloy[J]. Materials,2020,13(18):4157. [36] 杨光,刘雪东,王琮玮,等. 基于温度场模拟的镁合金SLM元素烧损行为[J]. 航空学报,2022,43(4):425-437. YANG Guang,LIU Xuedong,WANG Congwei,et al. SLM element burning behavior of magnesium alloy based on temperature field simulation[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):425-437. [37] PAWLAK A,SZYMCZYK P E,KURZYNOWSKI T,et al. Selective laser melting of magnesium AZ31B alloy powder[J]. Rapid Prototyping Journal,2020,26(2):249-258. [38] LIU S,YANG W S,SHI X,et al. Influence of laser process parameters on the densification,microstructure,and mechanical properties of a selective laser melted AZ61 magnesium alloy[J]. Journal of Alloys and Compounds,2019,808:151160. [39] 王金业,王帅鹏,岳彦芳,等. AZ91D镁合金选区激光熔融工艺试验研究[J]. 轻合金加工技术,2021,49(6):60-66. WANG Jinye,WANG Shuaipeng,YUE Yanfang,et al. Experimental study on selective laser melting of AZ91D magnesium alloy[J]. Light Alloy Fabrication Technology,2021,49(6):60-66. [40] WU C L,ZAI W,MAN H C. Additive manufacturing of ZK60 magnesium alloy by selective laser melting:Parameter optimization,microstructure and biodegradability[J]. Materials Today Communications,2021,26:101922. [41] 周华. 激光选区熔化成形ZK61镁合金工艺及组织性能研究[D]. 武汉:华中科技大学,2019. ZHOU Hua. Study on process and microstructure and properties of ZK61 magnesium alloy by selective laser melting[D]. Wuhan:Huazhong University of Science and Technology,2019. [42] LIU C,ZHANG M,CHEN C. Effect of laser processing parameters on porosity,microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturing[J]. Materials Science and Engineering A,2017,703:359-371. [43] LONG T,ZHANG X H,HUANG Q L,et al. Novel Mg-based alloys by selective laser melting for biomedical applications:microstructure evolution,microhardness and in vitro degradation behaviour[J]. Virtual and Physical Prototyping,2018,13(2):71-81. [44] ZHOU Y,WU P,YANG Y,et al. The microstructure,mechanical properties and degradation behavior of laser-melted Mg-Sn alloys[J]. Journal of Alloys and Compounds,2016,687:109-114. [45] 徐春杰,华心雨,马东,等. 选区激光熔化AZ91D镁合金的组织与性能[J]. 铸造技术,2021,42(9):749-753. XU Chunjie,HUA Xinyu,MA Dong,et al. Study on microstructure and properties of selective laser melted (SLM) magnesium alloy AZ91D[J]. Foundry Technology,2021,42(9):749-753. [46] LIANG J W,LEI Z L,CHEN Y B,et al. Mechanical properties of selective laser melted ZK60 alloy enhanced by nanoscale precipitates with core-shell structure[J]. Materials Letters,2020,263:127232. [47] WEI K W,GAO M,WANG Z M,et al. Effect of energy input on formability,microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy[J]. Materials Science and Engineering A,2014,611:212-222. [48] ZHANG M,CHEN C,LIU C,et al. Study on porous Mg-Zn-Zr ZK61 alloys produced by laser additive manufacturing[J]. Metals,2018,8(8):635. [49] NG C C,SAVALANI M M,MAN H C,et al. Layer manufacturing of magnesium and its alloy structures for future applications[J]. Virtual and Physical Prototyping,2010,5(1):13-19. [50] 岳彦芳,马方正,李建辉,等. AZ91D镁合金激光熔化成形工艺参数优化[J]. 河北工业科技,2018,35(4):278-282. YUE Yanfang,MA Fangzheng,LI Jianhui,et al. Process parameters optimization of selective laser melting molding of AZ91D magnesium alloy[J]. Hebei Industrial Science and Technology,2018,35(4):278-282. [51] ZUMDICK N A,JAUER L,KERSTING L C,et al. Additive manufactured WE43 magnesium:A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43[J]. Materials Characterization,2019,147:384-397. [52] HYER H,ZHOU L,BENSON G,et al. Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion[J]. Additive Manufacturing,2020,33:101123. [53] DENG Q,WU Y,LUO Y,et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloy via selective laser melting[J]. Materials Characterization,2020,165:110377. [54] FU P,WANG N,LIAO H,et al. Microstructure and mechanical properties of high strength Mg-15Gd-1Zn-0.4 Zr alloy additive-manufactured by selective laser melting process[J]. Transactions of Nonferrous Metals Society of China,2021,31(7):1969-1978. [55] HU D,WANG Y,ZHANG D F,et al. Experimental investigation on selective laser melting of bulk net-shape pure magnesium[J]. Materials and Manufacturing Processes,2015,30(11):1298-1304. [56] LIU S,GUO H J. Influence of hot isostatic pressing (HIP) on mechanical properties of magnesium alloy produced by selective laser melting (SLM)[J]. Materials Letters,2020,265:127463. [57] 崔博帅,王建刚,张欣,等. 热处理对SLM AZ91D镁合金组织及腐蚀行为的影响[J]. 表面技术,2021,50(3):323-329,365. CUI Boshuai,WANG Jiangang,ZHANG Xin,et al. Effect of heat treatment on microstructures and corrosion properties of SLM AZ91D magnesium alloy[J]. Surface Technology,2021,50(3):323-329,365. [58] WU J,WANG L. Selective laser melting manufactured CNTs/AZ31B composites:heat transfer and vaporized porosity evolution[J]. Journal of Materials Research,2018,33(18):2752-2762. [59] MÜLLER J,GRABOWSKI M,MÜLLER C,et al. Design and parameter identification of wire and arc additively manufactured (WAAM) steel bars for use in construction[J]. Metals,2019,9(7):725. [60] SU C,CHEN X,KONOVALOV S,et al. Effect of deposition strategies on the microstructure and tensile properties of wire arc additive manufactured Al-5Si alloys[J]. Journal of Materials Engineering and Performance,2021,30(3):2136-2146. [61] 何俊杰,马瑞杨,王天琪. 镁合金冷金属过渡熔池动态行为数值模拟[J]. 材料科学与工艺,2022,30(5):18-26. HE Junjie,MA Ruiyang,WANG Tianqi. Numerical simulation of dynamic behavior of magnesium alloy cold metal transition molten pool[J]. Materials Science and Technology,2022,30(5):18-26. [62] GRAF M,HÄLSIG A,HÖFER K,et al. Thermo-mechanical modelling of wire-arc additive manufacturing (WAAM) of semi-finished products[J]. Metals,2018,8(12):1009. [63] KLEIN T,ARNOLDT A,SCHNALL M,et al. Microstructure formation and mechanical properties of a wire-arc additive manufactured magnesium alloy[J]. JOM,2021,73(4):1126-1134. [64] GUO Y,PAN H,REN L,et al. Microstructure and mechanical properties of wire arc additive manufactured AZ80M magnesium alloy[J]. Materials Letters,2019,247:4-6. [65] BI J,SHEN J,HU S,et al. Microstructure and mechanical properties of AZ91 Mg alloy fabricated by cold metal transfer additive manufacturing[J]. Materials Letters,2020,276:128185. [66] GNEIGER S,ÖSTERREICHER J A,ARNOLDT A R,et al. Development of a high strength magnesium alloy for wire arc additive manufacturing[J]. Metals,2020,10(6):778. [67] WANG P,ZHANG H Z,ZHU H,et al. Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source:Processing,microstructure,and mechanical behavior[J]. Journal of Materials Processing Technology,2021,288:116895. [68] TAKAGI H,SASAHARA H,ABE T,et al. Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing[J]. Additive Manufacturing,2018,24:498-507. [69] 施瀚超,胡立杰,郑涛. 电流对电弧增材制造AZ31镁合金成形与组织性能的影响[J]. 铸造技术,2018,39(10):2285-2288. SHI Hanchao,HU Lijie,ZHENG Tao. Effects of electric current on the forming,microstructure and mechanical properties of AZ31 alloy prepared by wire arc additive manufacturing[J]. Foundry Technology,2018,39(10):2285-2288. [70] 占宇航,郭阳阳,李章张,等. 工艺参数对电弧增材制造镁合金组织和性能的影响[J]. 热加工工艺,2022,51(19):26-29. ZHAN Yuhang,GUO Yangyang,LI Zhangzhang,et al. Effect of process parameters on microstructure and properties of magnesium alloy produced by wire arc additive manufacturing[J]. Hot Working Technology,2022,51(19):26-29. [71] 张汉铮. 基于冷金属过渡的镁合金电弧增材制造技术基础研究[D]. 石家庄:石家庄铁道大学,2021. ZHANG Hanzheng. Basic study on wire-arc additive manufacturing of magnesium alloy fabricated by cold metal transfer heat source[D]. Shijiazhuang:Shijiazhuang Tiedao University,2021. [72] SHEN X,MA G,CHEN P. Effect of welding process parameters on hybrid GMAW-GTAW welding process of AZ31B magnesium alloy[J]. The International Journal of Advanced Manufacturing Technology,2018,94(5):2811-2819. [73] 倪加明,刘思余,李志豪,等. 镁合金电弧熔丝增材成形质量控制研究[J]. 热加工工艺,2021,50(13):128-132. NI Jiaming,LIU Siyu,LI Zhihao,et al. Study on forming quality control of magnesium alloy wire arc additive manufacturing[J]. Hot Working Technology,2021,50(13):128-132. [74] YING T,ZHAO Z,YAN P,et al. Effect of fabrication parameters on the microstructure and mechanical properties of wire arc additive manufactured AZ61 alloy[J]. Materials Letters,2022,307:131014. [75] 郭靖. 镁合金电弧增材制造工艺参数的试验研究[D]. 北京:北京理工大学,2016. GUO Jing. Experimental investigation of the process parameters of wire arc additive manufacturing for magnesium alloy[D]. Beijing:Beijing Institute of Technology,2016. [76] GUO Y,QUAN G,CELIKIN M,et al. Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing[J]. Journal of Magnesium and Alloys,2022,10(7):1930-1940. [77] 郭阳阳. 电弧增材制造AZ80M镁合金冶金过程表征与构型优化研究[D]. 成都:西南交通大学,2021. GUO Yangyang. Metallurgical process characterization and configuration optimization of AZ80M magnesium alloy manufacturing[D]. Chengdu:Southwest Jiaotong University,2021. [78] 李建伟,何智,龙建周,等. 搅拌摩擦处理对镁合金电弧增材修复层缺陷调控[J]. 机械工程学报,2022,58(4):55-61. LI Jianwei,HE Zhi,LONG Jianzhou,et al. Control of defects in mg alloy arc additive repair layer by friction stir treatment[J]. Journal of Mechanical Engineering,2022,58(4):55-61. [79] GOPAN V,WINS K L D,SURENDRAN A. Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes:A review[J]. CIRP Journal of Manufacturing Science and Technology,2021,32:228-248. [80] HE C,LI Y,ZHANG Z,et al. Investigation on microstructural evolution and property variation along building direction in friction stir additive manufactured Al-Zn-Mg alloy[J]. Materials Science and Engineering A,2020,777:135039. [81] ROBINSON T W,WILLIAMS M B,RAO H M,et al. Microstructural and mechanical properties of a solid-state additive manufactured magnesium alloy[J]. Journal of Manufacturing Science and Engineering,2022,144(6):061013. [82] SRIVASTAVA M,RATHEE S,MAHESHWARI S,et al. A review on recent progress in solid state friction based metal additive manufacturing:Friction stir additive techniques[J]. Critical Reviews in Solid State and Materials Sciences,2018,44(5):345-377. [83] RATHEE S,MAHESHWARI S,Siddiquee A N,et al. A review of recent progress in solid state fabrication of composites and functionally graded systems via friction stir processing[J]. Critical Reviews in Solid State and Materials Sciences,2017,43(4):334-366. [84] 张昊,李京龙,孙福,等. 扩散焊固相增材制造技术与工程化应用[J]. 航空制造技术,2018,61(8):68-75. ZHANG Hao,LI Jinglong,SUN Fu,et al. Diffusion welding solid-phase additive manufacturing technology and engineering application[J]. Aviation Manufacturing Technology,2018,61(8):68-75. [85] 李如琦,吴奇,龙连春. 搅拌摩擦增材成形过程仿真与显微性能预测[J]. 中国有色金属学报,2020,30(8):1846-1854. LI Ruiqi,WU Qi,LONG Lianchun. Simulation of friction stir additive process and its micro-properties prediction[J]. The Chinese Journal of Nonferrous Metals,2020,30(8):1846-1854. [86] PALANIVEL S,NELATURU P,GLASS B,et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy[J]. Materials & Design,2015,65:934-952. [87] MCCLELLAND Z,AVERY D Z,WILLIAMS M B,et al. Microstructure and mechanical properties of high shear material deposition of rare earth magnesium alloys WE43[M]. London:Springer,Cham.,2019. |