机械工程学报 ›› 2024, Vol. 60 ›› Issue (7): 385-400.doi: 10.3901/JME.2024.07.385
郑洋1,2,3, 赵梓昊2,4, 刘伟5, 余政哲3, 牛伟2,4, 雷贻文2,4, 孙荣禄2,4
收稿日期:2023-04-08
修回日期:2023-11-04
出版日期:2024-04-05
发布日期:2024-06-07
通讯作者:
郑洋,男,1988年出生,博士,讲师,硕士研究生导师。主要研究方向为金属增材制造技术。E-mail:zhengyang@tiangong.edu.cn
作者简介:赵梓昊,男,1998年出生,硕士研究生。主要研究方向为镁合金激光选区熔化增材制造技术。E-mail:1915562564@qq.com
基金资助:ZHENG Yang1,2,3, ZHAO Zihao2,4, LIU Wei5, YU Zhengzhe3, NIU Wei2,4, LEI Yiwen2,4, SUN Ronglu2,4
Received:2023-04-08
Revised:2023-11-04
Online:2024-04-05
Published:2024-06-07
摘要: 镁合金在航空航天、轨道交通、新能源、生物医用等领域具有广阔应用前景,增材制造技术(Additive manufacturing)的发展为成形复杂结构的高性能镁合金构件提供了可能。然而,镁合金熔沸点低、蒸气压高、氧化性强的特点易使增材制造构件内部形成孔隙、裂纹、夹杂物等缺陷,导致增材制造镁合金的应用水平远远落后于高温合金、铝合金、钛合金等材料,开发适用于镁合金的增材制造技术并通过材料改性与工艺优化减少冶金缺陷是突破增材制造镁合金应用瓶颈的关键。镁合金增材制造技术主要有激光选区熔化(Selective laser melting, SLM)、电弧增材制造(Wire arc additive manufacturing, WAAM)以及搅拌摩擦增材制造(Friction stir additive manufacturing, FSAM)和搅拌摩擦沉积增材(Additive friction stir deposition, AFSD)。通过归纳梳理镁合金增材制造技术的研究现状与技术进展,总结了镁合金在不同增材制造技术成形过程中的数值模拟研究结果,对比分析了不同增材制造技术关键工艺参数对镁合金构件组织结构和力学性能的影响,并对镁合金增材制造技术未来的研究重点进行了展望。
中图分类号:
郑洋, 赵梓昊, 刘伟, 余政哲, 牛伟, 雷贻文, 孙荣禄. 高性能镁合金增材制造技术研究进展[J]. 机械工程学报, 2024, 60(7): 385-400.
ZHENG Yang, ZHAO Zihao, LIU Wei, YU Zhengzhe, NIU Wei, LEI Yiwen, SUN Ronglu. Research Progress in High-performance Mg Alloys Prepared by Additive Manufacturing[J]. Journal of Mechanical Engineering, 2024, 60(7): 385-400.
| [1] XU T C,YANG Y,PENG X D,et al. Overview of advancement and development trend on magnesium alloy[J]. Journal of Magnesium and Alloys,2019,7(3):536-544. [2] ZHENG Y,MA Y L,ZANG L B,et al. Microstructure,corrosion behavior,and surface mechanical properties of Fe oxide coatings on biomedical ZK60 Mg alloy[J]. Materials and Corrosion,2019,70(12):2292-2302. [3] LI N,YAN H,WU Q,et al. Fabrication of carbon nanotubes and rare earth Pr reinforced AZ91 composites by powder metallurgy[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-10. [4] ZHENG Y,ZANG L B,BI Y Z,et al. Corrosion behavior of Fe/Zr composite coating on ZK60 Mg alloy by ion implantation and deposition[J]. Coatings,2018,8(8):261-272. [5] YANG Y,XIONG X M,CHEN J,et al. Research advances in magnesium and magnesium alloys worldwide in 2020[J]. Journal of Magnesium and Alloys,2021,9(3):705-747. [6] KARUNAKARAN R,ORTGIES S,TAMAYOL A,et al. Additive manufacturing of magnesium alloys[J]. Bioactive Materials,2020,5(1):44-54. [7] 李祺祺,温耀杰,张百成,等. 梯度功能合金的增材制造技术研究进展[J]. 机械工程学报,2021,57(22):184-200. LI Qiqi,WEN Yaojie,ZHANG Baicheng,et al. Research progress of functional graded alloy prepared by additive manufacturing technology[J]. Journal of Mechanical Engineering,2021,57(22):184-200. [8] KOONS G L,DIBA M,MIKOS A G. Materials design for bone-tissue engineering[J]. Nature Reviews Materials,2020,5(8):584-603. [9] LI N,LIU W,WANG Y,et al. Laser additive manufacturing on metal matrix composites:A review[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-16. [10] 刘伟,李能,周标,等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报,2019,55(20):128-151,159. LIU Wei,LI Neng,ZHOU Biao,et al. Progress in additive manufacturing of complex structures and high- performance materials[J]. Journal of Mechanical Engineering,2019,55(20):128-151,159. [11] JIA H,SUN H,WANG H,et al. Scanning strategy in selective laser melting (SLM):A review[J]. The International Journal of Advanced Manufacturing Technology,2021,113(9):2413-2435. [12] WANG Z L,ZHANG Y B. A review of aluminum alloy fabricated by different processes of wire arc additive manufacturing[J]. Materials Science-Medziagotyra,2021,27(1):18-26. [13] CHEN C,LIN S B,FAN C L,et al. Feasibility analysis of pulsed ultrasonic for controlling the GMAW process and weld appearance[J]. International Journal of Advanced Manufacturing Technology,2018,97(9):3619-3624. [14] SHARMA P,DWIVEDI D K. Comparative study of activated flux-GTAW and multipass-GTAW dissimilar P92 steel-304H ASS joints[J]. Materials and Manufacturing Processes,2019,34(11):1195-1204. [15] DEREKAR K S,ADDISON A,JOSHI S S,et al. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium[J]. The International Journal of Advanced Manufacturing Technology,2020,107(1):311-331. [16] YU H Z,MISHRA R S. Additive friction stir deposition:A deformation processing route to metal additive manufacturing[J]. Materials Research Letters,2021,9(2):71-83. [17] JORDON J B,ALLISON P G,PHILLIPS B J,et al. Direct recycling of machine chips through a novel solid-state additive manufacturing process[J]. Materials & Design,2020,193:108850. [18] 石磊,李阳,肖亦辰,等. 基于搅拌摩擦的金属固相增材制造研究进展[J]. 材料工程,2022,50(1):1-14. SHI Lei,LI Yang,XIAO Yichen,et al. Research progress in the manufacturing of metal solid phase additive based on mixing and friction[J]. Journal of Materials Engineering,2022,50(1):1-14. [19] UNOCIC R R,DUPONT J N. Process efficiency measurements in the laser engineered net shaping process[J]. Metallurgical and Materials Transaction B,2004,35(1):143-152. [20] PIERRON N,SALLAMAND P,MATTEÏS. Study of magnesium and aluminum alloys absorption coefficient during Nd:YAG laser interaction[J]. Applied Surface Science,2007,253(6):3208-3214. [21] DING D H,PAN Z X,CUIURI D,et al. Wire-feed additive manufacturing of metal components:Technologies,developments and future interests[J]. The International Journal of Advanced Manufacturing Technology. 2015,81(1):465-481. [22] BRASZCZYŃKA-MALIK K N,MRÓZ M. Gas-tungsten arc welding of AZ91 magnesium alloy[J]. Journal of Alloys and Compounds,2011,509(41):9951-9958. [23] PHILLIPS B J,MASON C J T,BECK S C,et al. Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al-Mg-Si alloy fabricated by additive friction stir deposition[J]. Journal of Materials Processing Technology,2021,295:117169. [24] ESMAILY M,ZENG Z,MORTAZAVI A N,et al. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting[J]. Additive Manufacturing,2020,35:101321. [25] YANG X,LIU J,WANG Z,et al. Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process[J]. Materials Science and Engineering A,2020,774:138942. [26] WLODARSKI S,AVERY D Z,WHITE B C,et al. Evaluation of grain refinement and mechanical properties of additive friction stir layer welding of AZ31 magnesium alloy[J]. Journal of Materials Engineering and Performance,2021,30(2):964-972. [27] WILLIAMS M B,ROBINSON T W,WILLIAMSON C J,et al. Elucidating the effect of additive friction stir deposition on the resulting microstructure and mechanical properties of magnesium alloy WE43[J]. Metals,2021,11(11):1739. [28] GUO S,REN G,ZHANG B. Subsurface defect evaluation of selective-laser-melted Inconel 738LC alloy using eddy current testing for additive/subtractive hybrid manufacturing[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-16. [29] 贺鹏飞,魏正英,杜军,等. 铝合金熔滴复合电弧沉积同步WC颗粒强化增材制造工艺研究[J]. 机械工程学报,2022,58(5):258-267. HE Pengfei,WEI Zhengying,DU Jun,et al. Investigation of droplet + arc deposition additive manufacturing with WCP simultaneous reinforcement for aluminum alloy[J]. Journal of Mechanical Engineering,2022,58(5):258-267. [30] GUO S,DU W,JIANG Q,et al. Surface integrity of ultrasonically-assisted milled Ti6Al4V alloy manufactured by selective laser melting[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-14. [31] PAN A Q,ZHANG H,WANG Z M,et al. Progress parameters and microstructure of Ni-based single crystal superalloy processed by selective laser melting[J]. Chinese Journal of Lasers,2019,46(11):138-144. [32] LIU Y,YANG Y,WANG D. A study on the residual stress during selective laser melting (SLM) of metallic powder[J]. The International Journal of Advanced Manufacturing Technology,2016,87(1):647-656. [33] HE P D,WEBSTER R F,YAKUBOV V,et al. Fatigue and dynamic aging behavior of a high strength Al-5024 alloy fabricated by laser powder bed fusion additive manufacturing[J]. Acta Materialia,2021,220:117312. [34] DEBROY T,MUKHERJEE T,WEI H L,et al. Metallurgy,mechanistic models and machine learning in metal printing[J]. Nature Reviews Materials,2020,6(1):48-68. [35] SHEN H Y,YAN J W,NIU X M. Thermo-Fluid-Dynamic modeling of the melt pool during selective laser melting for AZ91D magnesium alloy[J]. Materials,2020,13(18):4157. [36] 杨光,刘雪东,王琮玮,等. 基于温度场模拟的镁合金SLM元素烧损行为[J]. 航空学报,2022,43(4):425-437. YANG Guang,LIU Xuedong,WANG Congwei,et al. SLM element burning behavior of magnesium alloy based on temperature field simulation[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):425-437. [37] PAWLAK A,SZYMCZYK P E,KURZYNOWSKI T,et al. Selective laser melting of magnesium AZ31B alloy powder[J]. Rapid Prototyping Journal,2020,26(2):249-258. [38] LIU S,YANG W S,SHI X,et al. Influence of laser process parameters on the densification,microstructure,and mechanical properties of a selective laser melted AZ61 magnesium alloy[J]. Journal of Alloys and Compounds,2019,808:151160. [39] 王金业,王帅鹏,岳彦芳,等. AZ91D镁合金选区激光熔融工艺试验研究[J]. 轻合金加工技术,2021,49(6):60-66. WANG Jinye,WANG Shuaipeng,YUE Yanfang,et al. Experimental study on selective laser melting of AZ91D magnesium alloy[J]. Light Alloy Fabrication Technology,2021,49(6):60-66. [40] WU C L,ZAI W,MAN H C. Additive manufacturing of ZK60 magnesium alloy by selective laser melting:Parameter optimization,microstructure and biodegradability[J]. Materials Today Communications,2021,26:101922. [41] 周华. 激光选区熔化成形ZK61镁合金工艺及组织性能研究[D]. 武汉:华中科技大学,2019. ZHOU Hua. Study on process and microstructure and properties of ZK61 magnesium alloy by selective laser melting[D]. Wuhan:Huazhong University of Science and Technology,2019. [42] LIU C,ZHANG M,CHEN C. Effect of laser processing parameters on porosity,microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturing[J]. Materials Science and Engineering A,2017,703:359-371. [43] LONG T,ZHANG X H,HUANG Q L,et al. Novel Mg-based alloys by selective laser melting for biomedical applications:microstructure evolution,microhardness and in vitro degradation behaviour[J]. Virtual and Physical Prototyping,2018,13(2):71-81. [44] ZHOU Y,WU P,YANG Y,et al. The microstructure,mechanical properties and degradation behavior of laser-melted Mg-Sn alloys[J]. Journal of Alloys and Compounds,2016,687:109-114. [45] 徐春杰,华心雨,马东,等. 选区激光熔化AZ91D镁合金的组织与性能[J]. 铸造技术,2021,42(9):749-753. XU Chunjie,HUA Xinyu,MA Dong,et al. Study on microstructure and properties of selective laser melted (SLM) magnesium alloy AZ91D[J]. Foundry Technology,2021,42(9):749-753. [46] LIANG J W,LEI Z L,CHEN Y B,et al. Mechanical properties of selective laser melted ZK60 alloy enhanced by nanoscale precipitates with core-shell structure[J]. Materials Letters,2020,263:127232. [47] WEI K W,GAO M,WANG Z M,et al. Effect of energy input on formability,microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy[J]. Materials Science and Engineering A,2014,611:212-222. [48] ZHANG M,CHEN C,LIU C,et al. Study on porous Mg-Zn-Zr ZK61 alloys produced by laser additive manufacturing[J]. Metals,2018,8(8):635. [49] NG C C,SAVALANI M M,MAN H C,et al. Layer manufacturing of magnesium and its alloy structures for future applications[J]. Virtual and Physical Prototyping,2010,5(1):13-19. [50] 岳彦芳,马方正,李建辉,等. AZ91D镁合金激光熔化成形工艺参数优化[J]. 河北工业科技,2018,35(4):278-282. YUE Yanfang,MA Fangzheng,LI Jianhui,et al. Process parameters optimization of selective laser melting molding of AZ91D magnesium alloy[J]. Hebei Industrial Science and Technology,2018,35(4):278-282. [51] ZUMDICK N A,JAUER L,KERSTING L C,et al. Additive manufactured WE43 magnesium:A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43[J]. Materials Characterization,2019,147:384-397. [52] HYER H,ZHOU L,BENSON G,et al. Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion[J]. Additive Manufacturing,2020,33:101123. [53] DENG Q,WU Y,LUO Y,et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloy via selective laser melting[J]. Materials Characterization,2020,165:110377. [54] FU P,WANG N,LIAO H,et al. Microstructure and mechanical properties of high strength Mg-15Gd-1Zn-0.4 Zr alloy additive-manufactured by selective laser melting process[J]. Transactions of Nonferrous Metals Society of China,2021,31(7):1969-1978. [55] HU D,WANG Y,ZHANG D F,et al. Experimental investigation on selective laser melting of bulk net-shape pure magnesium[J]. Materials and Manufacturing Processes,2015,30(11):1298-1304. [56] LIU S,GUO H J. Influence of hot isostatic pressing (HIP) on mechanical properties of magnesium alloy produced by selective laser melting (SLM)[J]. Materials Letters,2020,265:127463. [57] 崔博帅,王建刚,张欣,等. 热处理对SLM AZ91D镁合金组织及腐蚀行为的影响[J]. 表面技术,2021,50(3):323-329,365. CUI Boshuai,WANG Jiangang,ZHANG Xin,et al. Effect of heat treatment on microstructures and corrosion properties of SLM AZ91D magnesium alloy[J]. Surface Technology,2021,50(3):323-329,365. [58] WU J,WANG L. Selective laser melting manufactured CNTs/AZ31B composites:heat transfer and vaporized porosity evolution[J]. Journal of Materials Research,2018,33(18):2752-2762. [59] MÜLLER J,GRABOWSKI M,MÜLLER C,et al. Design and parameter identification of wire and arc additively manufactured (WAAM) steel bars for use in construction[J]. Metals,2019,9(7):725. [60] SU C,CHEN X,KONOVALOV S,et al. Effect of deposition strategies on the microstructure and tensile properties of wire arc additive manufactured Al-5Si alloys[J]. Journal of Materials Engineering and Performance,2021,30(3):2136-2146. [61] 何俊杰,马瑞杨,王天琪. 镁合金冷金属过渡熔池动态行为数值模拟[J]. 材料科学与工艺,2022,30(5):18-26. HE Junjie,MA Ruiyang,WANG Tianqi. Numerical simulation of dynamic behavior of magnesium alloy cold metal transition molten pool[J]. Materials Science and Technology,2022,30(5):18-26. [62] GRAF M,HÄLSIG A,HÖFER K,et al. Thermo-mechanical modelling of wire-arc additive manufacturing (WAAM) of semi-finished products[J]. Metals,2018,8(12):1009. [63] KLEIN T,ARNOLDT A,SCHNALL M,et al. Microstructure formation and mechanical properties of a wire-arc additive manufactured magnesium alloy[J]. JOM,2021,73(4):1126-1134. [64] GUO Y,PAN H,REN L,et al. Microstructure and mechanical properties of wire arc additive manufactured AZ80M magnesium alloy[J]. Materials Letters,2019,247:4-6. [65] BI J,SHEN J,HU S,et al. Microstructure and mechanical properties of AZ91 Mg alloy fabricated by cold metal transfer additive manufacturing[J]. Materials Letters,2020,276:128185. [66] GNEIGER S,ÖSTERREICHER J A,ARNOLDT A R,et al. Development of a high strength magnesium alloy for wire arc additive manufacturing[J]. Metals,2020,10(6):778. [67] WANG P,ZHANG H Z,ZHU H,et al. Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source:Processing,microstructure,and mechanical behavior[J]. Journal of Materials Processing Technology,2021,288:116895. [68] TAKAGI H,SASAHARA H,ABE T,et al. Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing[J]. Additive Manufacturing,2018,24:498-507. [69] 施瀚超,胡立杰,郑涛. 电流对电弧增材制造AZ31镁合金成形与组织性能的影响[J]. 铸造技术,2018,39(10):2285-2288. SHI Hanchao,HU Lijie,ZHENG Tao. Effects of electric current on the forming,microstructure and mechanical properties of AZ31 alloy prepared by wire arc additive manufacturing[J]. Foundry Technology,2018,39(10):2285-2288. [70] 占宇航,郭阳阳,李章张,等. 工艺参数对电弧增材制造镁合金组织和性能的影响[J]. 热加工工艺,2022,51(19):26-29. ZHAN Yuhang,GUO Yangyang,LI Zhangzhang,et al. Effect of process parameters on microstructure and properties of magnesium alloy produced by wire arc additive manufacturing[J]. Hot Working Technology,2022,51(19):26-29. [71] 张汉铮. 基于冷金属过渡的镁合金电弧增材制造技术基础研究[D]. 石家庄:石家庄铁道大学,2021. ZHANG Hanzheng. Basic study on wire-arc additive manufacturing of magnesium alloy fabricated by cold metal transfer heat source[D]. Shijiazhuang:Shijiazhuang Tiedao University,2021. [72] SHEN X,MA G,CHEN P. Effect of welding process parameters on hybrid GMAW-GTAW welding process of AZ31B magnesium alloy[J]. The International Journal of Advanced Manufacturing Technology,2018,94(5):2811-2819. [73] 倪加明,刘思余,李志豪,等. 镁合金电弧熔丝增材成形质量控制研究[J]. 热加工工艺,2021,50(13):128-132. NI Jiaming,LIU Siyu,LI Zhihao,et al. Study on forming quality control of magnesium alloy wire arc additive manufacturing[J]. Hot Working Technology,2021,50(13):128-132. [74] YING T,ZHAO Z,YAN P,et al. Effect of fabrication parameters on the microstructure and mechanical properties of wire arc additive manufactured AZ61 alloy[J]. Materials Letters,2022,307:131014. [75] 郭靖. 镁合金电弧增材制造工艺参数的试验研究[D]. 北京:北京理工大学,2016. GUO Jing. Experimental investigation of the process parameters of wire arc additive manufacturing for magnesium alloy[D]. Beijing:Beijing Institute of Technology,2016. [76] GUO Y,QUAN G,CELIKIN M,et al. Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing[J]. Journal of Magnesium and Alloys,2022,10(7):1930-1940. [77] 郭阳阳. 电弧增材制造AZ80M镁合金冶金过程表征与构型优化研究[D]. 成都:西南交通大学,2021. GUO Yangyang. Metallurgical process characterization and configuration optimization of AZ80M magnesium alloy manufacturing[D]. Chengdu:Southwest Jiaotong University,2021. [78] 李建伟,何智,龙建周,等. 搅拌摩擦处理对镁合金电弧增材修复层缺陷调控[J]. 机械工程学报,2022,58(4):55-61. LI Jianwei,HE Zhi,LONG Jianzhou,et al. Control of defects in mg alloy arc additive repair layer by friction stir treatment[J]. Journal of Mechanical Engineering,2022,58(4):55-61. [79] GOPAN V,WINS K L D,SURENDRAN A. Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes:A review[J]. CIRP Journal of Manufacturing Science and Technology,2021,32:228-248. [80] HE C,LI Y,ZHANG Z,et al. Investigation on microstructural evolution and property variation along building direction in friction stir additive manufactured Al-Zn-Mg alloy[J]. Materials Science and Engineering A,2020,777:135039. [81] ROBINSON T W,WILLIAMS M B,RAO H M,et al. Microstructural and mechanical properties of a solid-state additive manufactured magnesium alloy[J]. Journal of Manufacturing Science and Engineering,2022,144(6):061013. [82] SRIVASTAVA M,RATHEE S,MAHESHWARI S,et al. A review on recent progress in solid state friction based metal additive manufacturing:Friction stir additive techniques[J]. Critical Reviews in Solid State and Materials Sciences,2018,44(5):345-377. [83] RATHEE S,MAHESHWARI S,Siddiquee A N,et al. A review of recent progress in solid state fabrication of composites and functionally graded systems via friction stir processing[J]. Critical Reviews in Solid State and Materials Sciences,2017,43(4):334-366. [84] 张昊,李京龙,孙福,等. 扩散焊固相增材制造技术与工程化应用[J]. 航空制造技术,2018,61(8):68-75. ZHANG Hao,LI Jinglong,SUN Fu,et al. Diffusion welding solid-phase additive manufacturing technology and engineering application[J]. Aviation Manufacturing Technology,2018,61(8):68-75. [85] 李如琦,吴奇,龙连春. 搅拌摩擦增材成形过程仿真与显微性能预测[J]. 中国有色金属学报,2020,30(8):1846-1854. LI Ruiqi,WU Qi,LONG Lianchun. Simulation of friction stir additive process and its micro-properties prediction[J]. The Chinese Journal of Nonferrous Metals,2020,30(8):1846-1854. [86] PALANIVEL S,NELATURU P,GLASS B,et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy[J]. Materials & Design,2015,65:934-952. [87] MCCLELLAND Z,AVERY D Z,WILLIAMS M B,et al. Microstructure and mechanical properties of high shear material deposition of rare earth magnesium alloys WE43[M]. London:Springer,Cham.,2019. |
| [1] | 孔玲, 王玉辉, 杨浩坤, 彭艳. Fe-Mn-Al-C系奥氏体基低密度钢使役性能研究进展[J]. 机械工程学报, 2024, 60(8): 34-47. |
| [2] | 张云舒, 吴斌涛, 赵昀, 丁东红, 潘增喜, 李会军. 电弧熔丝增材制造传热传质数值模拟研究现状与展望[J]. 机械工程学报, 2024, 60(8): 65-80. |
| [3] | 任志英, 黄子豪, 方荣政, 王秦伟, 莫继良, 秦红玲. 金属橡胶无序式网格互穿结构的热力学性能研究[J]. 机械工程学报, 2024, 60(8): 165-175. |
| [4] | 李坤, 吉辰, 白生文, 蒋斌, 潘复生. 高性能镁合金电弧增材制造技术研究现状与展望[J]. 机械工程学报, 2024, 60(7): 289-311. |
| [5] | 陈伟, 赵杰, 朱利斌, 曹海波. 增材制造低活化钢研究现状及展望[J]. 机械工程学报, 2024, 60(7): 312-333. |
| [6] | 杜文博, 李晓亮, 李霞, 胡深恒, 朱胜. 搅拌摩擦沉积增材技术研究现状[J]. 机械工程学报, 2024, 60(7): 374-384. |
| [7] | 鲍鑫宇, 麻永林, 程桥, 苏怡卉, 王杰, 邢淑清. 脉冲磁场熔体处理对Al-Si-Mg-Cu-Ni合金DC铸造凝固组织和力学性能的影响[J]. 机械工程学报, 2024, 60(6): 279-286. |
| [8] | 杜军, 王谦元, 何冀淼, 张永恒, 魏正英. TIG电弧辅助熔滴沉积增材制造中熔滴偏距对熔池形貌的影响机制研究[J]. 机械工程学报, 2024, 60(5): 219-230. |
| [9] | 周甜, 蔡力勋, 韩光照. 用于延性材料力学性能测定的圆柱平面-小冲杆试验新方法与应用[J]. 机械工程学报, 2024, 60(4): 316-325. |
| [10] | 崔桂涵, 杨春利. 基于高强高韧焊丝的脉冲GMAW焊缝金属强韧化机理研究[J]. 机械工程学报, 2024, 60(4): 326-334. |
| [11] | 胡龙, 刘红艳, 成慧梅, 陈维奇, 冯广杰, 叶延洪, 邓德安. 超高强耐磨钢NM500多层多道对接接头残余应力的研究[J]. 机械工程学报, 2024, 60(4): 335-344. |
| [12] | 马艺星, 杨蔚涛, 关肖虎, 杨旗, 赵同新. TWIP钢/IF钢热轧复合板材的微观结构和界面结合性能[J]. 机械工程学报, 2024, 60(4): 345-356. |
| [13] | 高强, 王健, 张严, 郑旭阳, 吕昊, 殷国栋. 拓扑优化方法及其在运载工程中的应用与展望[J]. 机械工程学报, 2024, 60(4): 369-390. |
| [14] | 蒋周明矩, 熊异, 王柏村. 面向工业5.0的人机协作增材制造[J]. 机械工程学报, 2024, 60(3): 238-253. |
| [15] | 宋军, 唐倩, 罗智超, 冯琪翔, 聂云飞, 任治好. 马氏体时效钢激光选区熔化成形过程介观尺度数值模拟[J]. 机械工程学报, 2024, 60(3): 282-295. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
