[1] YANG Q,SUN Q D,YANG W T,et al. Correlation between microstructure evolution and mechanical response in a moderately low stacking-fault-energy austenitic Fe-Mn-Si-Al alloy during low-cycle fatigue deformation[J]. Materials Science and Engineering:A,2021,824(26):1-14. [2] SHAO C W,ZHANG P,LIU R,et al. A remarkable improvement of low-cycle fatigue resistance of high-Mn austenitic TWIP alloys with similar tensile properties:Importance of slip mode[J]. Acta Materialia,2016,118(17):196-212. [3] SAWAGUCHI T, NIKULIN I, OGAWA K, et al.Designing Fe-Mn-Si alloys with improved low-cycle fatigue lives[J]. Scripta Materialia,2015,99(6):49-52. [4] NIKULIN I, SAWAGUCHI T, OGAWA K, et al.Microstructure evolution associated with a superior low-cycle fatigue resistance of the Fe-30Mn-4Si-2Al alloy[J]. Metallurgical and Materials Transactions A,2015,46(11):5103-5113. [5] NIKULIN I,SAWAGUCHI T,TSUZAKI K. Effect of alloying composition on low-cycle fatigue properties and microstructure of Fe-30Mn-(6x) Si-xAl TRIP/TWIP alloys[J]. Materials Science and Engineering:A,2013,587:192-200. [6] SHIH C C,HO N J,HUANG H L. Dislocation evolution in interstitial-free steel during constant and variable amplitude testing[J]. Journal of Materials Science,2010,45(7):1809-1816. [7] 杨旗,杨蔚涛,马艺星,等.一种具有层状复合结构的弹塑性阻尼钢板及其制造方法与应用,CN111235371B[P].2021-07-27.YANG Qi, YANG Weitao, MA Yixing, et al. An elastic-plastic damping steel plate with a layered composite structure and its manufacturing method and application,CN111235371B[P]. 2021-07-27. [8] PARK J,KIM J S,KANG M,et al. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel[J]. Scientific Reports,2017,7(7):1-12. [9] KIM J G,BAEK S M,YOON J I,et al. Stretchability and drawability of twinning-Induced plasticity steel-Cored layer steel sheets[J]. Journal of Materials Processing Technology,2017,250(12):357-362. [10] MA X,HUANG C,MOERING J,et al. Mechanical properties of copper/bronze laminates:Role of interfaces[J]. Acta Materialia,2016,116(15):43-52. [11] HUANG M,XU C,FAN G,et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite[J]. Acta Materialia,2018,153(12):235-249. [12] NAMBU S,MICHIUCHI M,INOUE J,et al. Effect of interfacial bonding strength on tensile ductility of multilayered steel composites[J]. Composites Science and Technology,2009,69(11-12):1936-1941. [13] KOSEKI T,INOUE J,NAMBU S. Development of multilayer steels for improved combinations of high strength and high ductility[J]. Materials Transactions,2014,55(2):227-237. [14] LIU B X,YIN F X,DAI X L,et al. The tensile behaviors and fracture characteristics of stainless steel clad plates with different interfacial status[J]. Materials Science and Engineering:A,2017,679(1):172-182. [15] SHENG L Y,YANG F,XI T F,et al. Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling[J]. Composites Part B:Engineering,2011,42(6):1468-1473. [16] MOVAHEDI M,KOKABI A H,SEYED REIHANI S M.Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization[J].Materials and Design,2011,32(6):3143-3149. [17] LAN P,ZHANG J Q. Twinning and dynamic strain aging behavior during tensile deformation of Fe-Mn-C TWIP steel[J]. Materials Science and Engineering:A,2017,700(22):250-258. [18] YANG H K,TIAN Y Z,ZHANG Z J,et al. Different strain rate sensitivities between Fe-22Mn-0.6C and Fe-30Mn-3Si-3Al twinning-induced plasticity steels[J].Materials Science and Engineering:A,2016,655(7):251-255. [19] 吴维,温彤,蒲思洪.层状复合板层间剪切强度的研究现状[J].机械制造,2009,46(1):34-37.WU Wei,WEN Tong,PU Sihong. Research status of interlaminar shear strength of laminated composite panels[J]. Machinery,2009,46(1):34-37 [20] 张哲峰,邵琛玮,王斌,等.孪生诱发塑性钢拉伸与疲劳性能及变形机制[J].金属学报,2020,56(4):476-486.ZHANG Zhefeng,SHAO Chenwei,WANG Bin,et al.Tensile and fatigue properties and deformation mechanisms of twinning-induced plasticity steels[J]. Acta Metall Sin,2020,56(4):476-486. [21] HAMADA A S,PORTER D A,PUUSTINEN J,et al.Study on cyclic strain localization and fatigue fracture mechanism in high manganese twinning-induced plasticity steels[J]. Materials Science Forum, 2013,762(8):411-417. [22] JACKSON P J, KUHLMANNWILSDORF D.Low-energy dislocation cell structures produced by cross-slip[J]. Scripta Metallurgica,1982,16(1):105-107. [23] SHIH C C,HO N J,HUANG H L. The study of fatigue behaviors and dislocation structures in interstitial-free steel[J]. Metallurgical and Materials Transactions A,2010,41(8):1995-2001. [24] EBRAHIMI M,LIU G,LI C,et al. Experimental and numerical analysis of Cu/Al8011/Al1060 trilayered composite:A comprehensive study[J]. Journal of Materials Research and Technology,2020,9(6):14695-14707. [25] RAHDARI M,REIHANIAN M,BAGHAL S M L.Microstructural control and layer continuity in deformation bonding of metallic laminated composites[J].Materials Science and Engineering:A,2018,738:98-110. [26] HUMPHREYS F J,HATHERLY M. Recrystallization and related annealing phenomena[M]. 2nd ed. Amsterdam:Pergamon,2004. [27] 胡赓祥,蔡珣,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2010.HU Gengxiang,CAI Xun,RONG Yonghua. Fundamentals of materials science[M]. Shanghai:Shanghai Jiao Tong University Press,2010. [28] ANDREWS K W. Empirical formulae for the calculation of some transformation temperatures[J]. Journal of the Iron and Steel Institute,1965,203(7):721-727. [29] DE COOMAN B C,KWON O,CHIN K G. State of the knowledge on TWIP steel[J]. Materials Science and Technology,2012,28(5):513-527. [30] SPEER J G,RIZZO F C,MATLOCK D K,et al. The"quenching and partitioning"process:Background and recent progress[J]. Materials Research,2005,8(4):417-423. [31] WANG F, ZHU Y, ZHOU H, et al. A novel microstructural design and heat treatment technique based on gradient control of carbon partitioning between austenite and martensite for high strength steels[J].Science China-Technological Sciences,2013,56(8):1847-1857. [32] SONG S W,LEE J H,LEE T,et al. Effect of the amount and temperature of prestrain on tensile and low-cycle fatigue properties of Fe-17Mn-0.5C TRIP/TWIP steel[J].Materials Science and Engineering:A,2017,696(18):493-502. |