• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (22): 437-446.doi: 10.3901/JME.2024.22.437

• 交叉与前沿 • 上一篇    下一篇

扫码分享

交变载荷下基于电流信号的机电系统可靠性建模与评估

王嘉1,2, 姜露露1,3, 陶友瑞1,3, 韩旭1,2,3   

  1. 1. 河北工业大学省部共建电工装备可靠性与智能化国家重点实验室 天津 300401;
    2. 河北工业大学电气工程学院 天津 300401;
    3. 河北工业大学机械工程学院 天津 300401
  • 收稿日期:2024-03-09 修回日期:2024-08-23 出版日期:2024-11-20 发布日期:2025-01-02
  • 作者简介:王嘉(通信作者),女,1988年出生,博士,研究员。主要研究方向为机器人可靠性建模与评估。E-mail:jwangno1@163.com;姜露露,女,1996年出生,硕士。主要研究方向为工业机器人退化建模及可靠性研究。E-mail:244946547@qq.com;陶友瑞,男,1973年出生,博士,教授。主要研究方向为可靠性设计与优化。E-mail:taoyourui@hebut.edu.cn;韩旭,男,1968年出生,博士,教授。主要研究方向为复杂装备可靠性技术、机械设计理论等。E-mail:xhan@hebut.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB4702100)、国家自然科学基金(U23A6017,72001069)、河北省优秀青年基金(E2021202094)、天津市科技计划(21JCZDJC00730,22KPHDRC00240)和河北省高等学校科学技术研究(BJK2023031)资助项目。

Reliability Modeling and Estimation of Electro-mechanical Systems under Alternating Loads Based on Current Signal

WANG Jia1,2, JIANG Lulu1,3, TAO Yourui1,3, HAN Xu1,2,3   

  1. 1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401;
    2. School of Electrical Engineering, Hebei University of Technology, Tianjin 300401;
    3. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401
  • Received:2024-03-09 Revised:2024-08-23 Online:2024-11-20 Published:2025-01-02
  • About author:10.3901/JME.2024.22.437

摘要: 准确及时的可靠性评估与故障预测是保障机电系统安全稳定运行的重要手段。采用电机电流特征分析技术对机电系统的机械传动部件进行可靠性建模与评估,能够最小程度地侵害系统并节约经济成本。现有研究大多针对恒定负载、转速的机电系统进行退化建模与可靠性评估,但是一些系统的服役工况存在多工序循环、且各工序阶段负载和转速变化的特点,例如工业机器人在执行具体工作任务(如打磨)的不同阶段(取料、打磨、换料)承受的负载不同,导致单个任务中各工序阶段电流幅值存在很大差异,这种差异在整个服役周期内循环出现,预设单一失效阈值对系统退化型失效的可靠性建模方法不再适用。针对重复执行多阶段任务的机电系统,提出一种基于电流信号的可靠性建模与评估方法,考虑不同任务阶段系统负载不同导致电流信号存在差异,构建了各任务阶段统一性能退化模型,结合不同阶段对应的失效阈值推导出可靠度函数的解析表达式,并针对单个或多个被试样品提出了改进的两步似然法进行参数估计。通过工业机器人谐波减速器交变载荷试验对所提方法进行了验证,结果表明:基于提出的模型的可靠性评估结果更准确合理,预设单一失效阈值的退化模型可能高估或低估可靠性。

关键词: 可靠性, 退化模型, 机电系统, 工业机器人, 电机电流特征分析

Abstract: Reliability estimation and failure prediction are important for the security and stability of electromechanical systems. Using motor current signature analysis to model and estimate the reliability of mechanical components of electromechanical systems can minimize the damage to the system and save cost. However, most of existing studies focus on the systems under constant load or single operating condition, while some systems with multi-stage cyclic tasks and varying loads, such as industrial robots, suffer from distinguishing loads at different stages of specific tasks, (For example, the grinding task includes taking, grinding, refueling and other stages), resulting in the diversity of amplitude of the motor current in a single task, and it appears in cycles with all the tasks during service. As a result, the traditional reliability estimation method with a single failure threshold is no longer applicable. For electromechanical systems under alternating load conditions, a reliability modeling and evaluation method based on current signals is proposed. Considering the differences in current amplitude caused by varying loads in different task stages, a unified performance degradation model for each task stage is constructed, and an analytical expression of reliability function is derived by combining the failure thresholds corresponding to different stages. An improved two-step likelihood method is proposed for parameter estimation of single or multiple samples. The proposed method is verified by the experiment of alternating load of harmonic reducer of industrial robot. The results show that the reliability estimation results based on the proposed model are more accurate and reasonable, and the degradation model with a single failure threshold may overestimate or underestimate the reliability.

Key words: reliability, degradation model, electromechanical, industrial robots, MCSA

中图分类号: