• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (16): 19-33.doi: 10.3901/JME.2024.16.019

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

基于单传感器测量的多模态叶片动应力场预测

赵峻林1,2, 乔百杰1,2, 罗现强3, 符顺国3, 程昊4, 王亚南1,2, 陈雪峰1,2   

  1. 1. 西安交通大学机械工程学院 西安 710049;
    2. 西安交通大学航空动力系统与等离子体技术全国重点实验室 西安 710061;
    3. 中国航空发动机有限公司四川燃气涡轮研究院 成都 610500;
    4. 北京强度环境研究所 北京 100076
  • 收稿日期:2023-11-23 修回日期:2024-04-19 出版日期:2024-08-20 发布日期:2024-10-21
  • 作者简介:赵峻林,男,1999年出生。主要研究方向为航空发动机叶片多模态振动分析。E-mail:wind67@stu.xjtu.edu.cn
    乔百杰(通信作者),男,1985年出生,博士,教授,博士研究生导师。主要研究方向为航空发动机叶片健康监测。E-mail:qiao1224@xitu.edu.cn
  • 基金资助:
    国家自然科学基金(52075414)、国家科技重大专项(2017-V-0009)和北京强度环境研究所委托课题资助项目。

Single-sensor-based Prediction of Blade Multimodal Dynamic Stress Field Variation

ZHAO Junlin1,2, QIAO Baijie1,2, LUO Xianqiang3, FU Shunguo3, CHENG Hao4, WANG Yanan1,2, CHEN Xuefeng1,2   

  1. 1. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049;
    2. National Key Lab of Aerospace Power System and Plasma Technology, Xi'an Jiaotong University, Xi'an 710061;
    3. Sichuan Gas Turbine Establishment, Aero Engine Corporation of China, Chengdu 610500;
    4. Beijing Intensity Environment, Beijing 100076
  • Received:2023-11-23 Revised:2024-04-19 Online:2024-08-20 Published:2024-10-21

摘要: 针对叶片发生多模态共振时最大应力点在时域和空域分布不固定的问题,开展基于单传感器测量的多模态叶片动应力场预测方法研究。首先,推导叶片多模态耦合振动解析表达式,获得多模态振动特征;其次,通过有限元模态分析提取叶片模态频率、振型,确定各阶模态参与量;最后,开展振动台叶片多模态激励试验,采用激光位移传感器作为单传感器测点采集叶尖振动位移响应,从中解耦提取多模态振动参数,计算预测叶片全场动应力的时空变化规律,并采用四个应变片监测点作为参照,对比验证计算结果。结果表明:不同模态参与情况下,预测的叶根中点、边缘和叶身中心点动应变均与实测结果高度吻合,相对误差均小于9%,同时指出多模态叶片动应力场和最大应力点的变化规律,验证了方法的有效性。

关键词: 航空发动机叶片, 多模态耦合共振, 动应力分析, 单传感器, 应力场重构

Abstract: A single-sensor-based prediction of blade multimodal dynamic stress field variation is proposed to solve the problem that the peak stress distribution for the blade is time-varying and space-varying under multi-mode vibration. Firstly, the analytical formula of blade multi-mode superposition vibration is derived, from which the characteristics of multi-mode vibration is obtained; Secondly, the participation coefficient of each mode is obtained based on the modal frequency and shape of the blade, which are extracted through finite element modal analysis; Finally, the multi-mode excitation experiment based on the vibration table is carried out, A laser displacement sensor is used as the single-sensor-measuring point to collect the blade tip vibration displacement response, from which the multi-mode vibration parameters are decoupled and extracted. The spatial-temporal variation law of the full field dynamic stress of the blade is calculated and predicted, and four strain-gauge-monitoring points are used as a reference to compare and verify the calculation results. Results show that the predicted dynamic strains at the blade root midpoint, edge, and blade body center point are highly consistent with the measured results under different modal participation, and the relative error is less than 9%. At the same time, the spatial-temporal variation law of the dynamic stress field and the peak stress of the multimodal blade are pointed out, which verifies the effectiveness of this method.

Key words: aeroengine blade, multi-mode vibration, dynamic stress analysis, single sensor, strain field reconstruction

中图分类号: