机械工程学报 ›› 2024, Vol. 60 ›› Issue (14): 77-96.doi: 10.3901/JME.2024.14.077
杨夏炜1, 孟廷曦1, 褚强2, 范文龙1, 苏宇1, 马铁军1, 李文亚1
收稿日期:
2023-07-22
修回日期:
2024-02-25
出版日期:
2024-07-20
发布日期:
2024-08-29
作者简介:
杨夏炜,男,1982年出生,博士,副教授,博士研究生导师。主要研究方向为摩擦焊接形性一体化设计及接头服役性能。E-mail:yangxiawei@nwpu.edu.cn;苏宇(通信作者),男,1993年出生,博士,博士后。主要研究方向为搅拌摩擦焊接/加工/增材制造。E-mail:suyu0327@163.com
基金资助:
YANG Xiawei1, MENG Tingxi1, CHU Qiang2, FAN Wenlong1, SU Yu1, MA Tiejun1, LI Wenya1
Received:
2023-07-22
Revised:
2024-02-25
Online:
2024-07-20
Published:
2024-08-29
摘要: 随着铝合金在航空航天、轨道交通及船舶制造等工业制造领域的应用持续增长,实现铝合金的高质量焊接已成为目前铝合金结构件轻量化发展的迫切需求与研究热点。搅拌摩擦焊接(Friction stir welding, FSW)作为一种固相焊接技术,在铝合金连接方面取得了显著进展。然而,随着大厚度铝合金板应用需求的日益增加,单面FSW接头由于焊缝底部的热量供应不足,易在焊缝底部形成缺陷,难以达到质量要求。为改善上述单面FSW接头中存在的缺陷问题,双面搅拌摩擦焊接技术应运而生。基于目前研究较为广泛的两种双面FSW工艺——常规顺序双面搅拌摩擦焊(Conventional double-sided friction stir welding, CDS-FSW)和双轴肩搅拌摩擦焊(Bobbin tool friction stir welding, BT-FSW)的研究成果,梳理和总结两种工艺的研究进展,重点从焊接工艺优化、接头宏微观组织形貌、力学性能及影响因素、搅拌头设计、焊接温度场和材料流动行为等方面进行详细分析与评述。最后,对双面搅拌摩擦焊接技术的热点问题及研究难题进行总结与展望,以期为双面搅拌摩擦焊技术的发展和实际工程应用提供理论参考。
中图分类号:
杨夏炜, 孟廷曦, 褚强, 范文龙, 苏宇, 马铁军, 李文亚. 铝合金双面搅拌摩擦焊接的研究进展[J]. 机械工程学报, 2024, 60(14): 77-96.
YANG Xiawei, MENG Tingxi, CHU Qiang, FAN Wenlong, SU Yu, MA Tiejun, LI Wenya. Research Progress in Double-sided Friction Stir Welding of Aluminum Alloy[J]. Journal of Mechanical Engineering, 2024, 60(14): 77-96.
[1] SINGH P,DEEPAK D,BRAR G S. Comparative evaluation of aluminum and stainless steel dissimilar welded joints[J]. Materials Today:Proceedings,2020,33(3):1488-1492. [2] ZHU S H,LI L Q,RONG Z Y,et al. Effect of welding position and direction on the interfacial microstructure and mechanical properties of double-pass friction stir lap welded A6061/Q235 joints[J]. Materials Today Communications,2023,34:105102. [3] GEORGAN E,GKANTOU M,KAMARIS G S. Aluminium alloys as structural material:A review of research[J]. Engineering Structures,2021,227:111372. [4] CABIBBO M,FORCELLESE A,MEHTEDI M E,et al. Double side friction stir welding of AA6082 sheets:Microstructure and nanoindentation characterization[J]. Materials Science and Engineering:A,2014,590:209-217. [5] FUSE K,BADHEKA V,PATEL V,et al. Dual sided composite formation in Al 6061/B4C using novel bobbin tool friction stir processing[J]. Journal of Materials Research and Technology,2021,13:1709-1721. [6] XU W F,LIN J H,CHEN D L. Influence of test temperature on the tensile properties along the thickness in a friction stir welded aluminum alloy[J]. Journal of Materials Science & Technology,2015,31(9):953-961. [7] SHAO M H,WANG C M,ZHANG H,et al. Microstructure and corrosion behavior of bobbin tool friction stir welded 2219 aluminum alloy[J]. Materials Characterization,2022,192:112178. [8] 陈东高,刘金合,陈东亮,等. 7A52厚板铝合金单双面搅拌摩擦焊接头性能对比分析[J]. 兵器材料科学与工程,2016,39(5):29-31. CHEN Donggao,LIU Jinhe,CHEN Dongliang,et al. Properties of welded joints of 7A52 aluminum alloy thick-plate by single-side and double-side friction stir welding[J]. Ordnance Material Science and Engineering,2016,39(5):29-31. [9] FADAEIFARD F,MATORI K A,TOOZANDEHJANI M,et al. Influence of rotational speed on mechanical properties of friction stir lap welded 6061-T6 Al alloy[J]. Transactions of Nonferrous Metals Society of China,2014,24(4):1004-1011. [10] MISHRA R S,MA Z Y. Friction stir welding and processing[J]. Materials Science and Engineering R Reports,2005,50(1-2):1-78. [11] 张华,林三宝,吴林,等. 搅拌摩擦焊研究进展及前景展望[J]. 焊接学报,2003,24(3):91-97. ZHANG Hua,LIN Sanbao,WU Lin,et al. Research progress and prospect of friction stir welding[J]. Transactions of the China Welding Institution,2003,24(3):91-97. [12] 董春林,栾国红,关桥. 搅拌摩擦焊在航空航天工业的应用发展现状与前景[J]. 焊接,2008(11):25-31. DONG Chunlin,LUAN Guohong,GUAN Qiao. Development and application of friction stir welding in aerospace industry[J]. Welding & Joining,2008(11):25-31. [13] GHARAVI F,MATORI K A,YUNUS R,et al. Corrosion evaluation of friction stir welded lap joints of AA6061-T6 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China,2016,26(3):684-696. [14] 何永攀,刘健,李远星,等. 42 mm厚A7N01S-T5铝合金板双面搅拌摩擦焊接头组织及疲劳性能研究[J]. 热加工工艺,2017,46(19):44-47. HE Yongpan,LIU Jian,LI Yuanxing,et al. Study on microstructure and fatigue properties of double-side friction stir welding joint of A7N01S-T5 aluminum alloy plates with thickness of 42 mm[J]. Hot Working Technology,2017,46(19):44-47. [15] HEIDARZADEH A,MIRONOV S,KAIBYSHEV R,et al. Friction stir welding/processing of metals and alloys:A comprehensive review on microstructural evolution[J]. Progress in Materials Science,2021,117:100752. [16] AVINASH P,MANIKANDAN M,ARIVAZHAGAN N,et al. Friction stir welded butt joints of AA2024-T3 and AA7075-T6 aluminum alloys[J]. Procedia Engineering,2014,75:98-102. [17] YANG C,WANG B B,YU B H,et al. High-cycle fatigue and fracture behavior of double-side friction stir welded 6082Al ultra-thick plates[J]. Engineering Fracture Mechanics,2020,226:106887. [18] ENTRINGER J,MEISNAR M,REIMANN M,et al. The effect of grain boundary precipitates on stress corrosion cracking in a bobbin tool friction stir welded Al-Cu-Li alloy[J]. Materials Letters:X,2019,2:100014. [19] KASHAEV N,VENTZKE V,CAM G. Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications[J]. Journal of Manufacturing Processes,2018,36:571-600. [20] GUO J F,CHEN H C,SUN C N,et al. Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters[J]. Materials & Design,2014,56(4):185-192. [21] 蒋笑. 铝合金搅拌摩擦焊接头残余应力测试及数值模拟[D]. 镇江:江苏科技大学,2015. JIANG Xiao. Residual stresses measurement and numerical simulation for friction stir welding of aluminum alloy[D]. Zhenjiang:Jiangsu University of Science and Technology,2015. [22] XU W F,LUO Y X,FU M W. Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-T7452 aluminum alloy[J]. Materials Characterization,2018,138:48-55. [23] RAHMATIAN B,DEHGHANI K,MIRSALEHI S E. Effect of adding SiC nanoparticles to nugget zone of thick AA5083 aluminium alloy joined by using double-sided friction stir welding[J]. Journal of Manufacturing Processes,2020,52:152-164. [24] MAO Y Q,KE L M,LIU F C,et al. Investigations on temperature distribution, microstructure evolution, and property variations along thickness in friction stir welded joints for thick AA7075-T6 plates[J]. The International Journal of Advanced Manufacturing Technology,2016,86(1):141-154. [25] MAO Y,KE L M,Chen Y H,et al. Improving local and global mechanical properties of friction stir welded thick AA7075-T6 joints by optimizing pin-tip profile[J]. International Journal of Advanced Manufacturing Technology,2017,88(5-8):1863-1875. [26] LI Y,SHI L,WU C S,et al. Elucidation of welding speed on the microstructure and mechanical properties of medium-thick dissimilar Al/Ti double-side friction stir welded joint[J]. Materials Characterization,2023,200:112910. [27] 张骥俊,曹菊勇,邢彦锋,等. 焊前和焊后热处理对2195铝锂合金双面搅拌摩擦焊接头组织与性能的影响[J]. 机械工程材料,2022,46(2):75-80. ZHANG Jijun,CAO Juyong,XING Yanfeng,et al. Effect of pre-and post-weld heat treatment on microstructure and properties of 2195 Al-Li alloy double-sided friction stir welded Joints[J]. Materials for Mechanical Engineering,2022,46(2):75-80. [28] XU W F,ZHANG W,WU X L. Corrosion behavior of top and bottom surfaces for single-side and double-side friction stir welded 7085-T7651 aluminum alloy thick plate joints[J]. Metallurgical & Materials Transactions A,2017,48(3):1078-1091. [29] 张秋征,宫文彪,刘杰. 6005A-T6铝合金厚板单面与双面搅拌摩擦焊的性能比较[J]. 材料热处理学报,2014,35(6):75-79. ZHANG Qiuzheng,GONG Wenbiao,LIU Jie. Property comparison of aluminum alloy 6005A-T6 thick plate by single-sided and double-sided processes of friction stir welding[J]. Transactions of Materials and Heat Treatment,2014,35(6):75-79. [30] 刘亮. 5052/6061异材等厚铝合金板搅拌摩擦焊接头组织及性能研究[D]. 武汉:湖北工业大学,2016. LIU Liang. Study on microstructure and properties of friction stir welded joint of 5052/6061 dissimilar aluminum alloy plate[D]. Wuhan:Hubei University of Technology,2016. [31] 丰琪. 6063铝合金搅拌摩擦双面焊接接头组织及力学性能研究[D]. 天津:天津大学,2021. FENG Qi. Microstructure and mechanical properties of 6063-T6 aluminum alloy machining by double-sided friction stir welding[D]. Tianjin:Tianjin University,2021. [32] HEJAZI I,MIRSALEHI S E. Effect of pin penetration depth on double-sided friction stir welded joints of AA6061-T913 alloy[J]. Transactions of Nonferrous Metals Society of China,2016,26(3):676-683. [33] SINGH Y,SINGH B. Tensile behaviour for aluminium alloy (6061) in single & double pass friction stir welding by using different tool shapes[J]. International Journal of Research in Engineering and Applied Sciences,2014,4:43-50. [34] SU M L,QI X Y,XU L Y,et al. Microstructural and mechanical analysis of 6063-T6 aluminum alloy joints bonded by friction stir welding[J]. Journal of Materials Science,2022,57(31):15078-15093. [35] RATURI M,BHATTACHARYA A. Attributes of intergranular corrosion in AA6061-AA7075 double sided friction stir weld[J]. Materials Chemistry and Physics,2023,298:127429. [36] KHAN N,RATHEE S,SRIVASTAVA M. Friction stir welding:An overview on effect of tool variables[J]. Materials Today:Proceedings,2021,47(19):7196-7202. [37] GARG S,RATURI M,GARG A,et al. Microstructure evolution and mechanical properties of double-sided friction stir welding between AA6061-T6 and AA7075-T651[J]. CIRP Journal of Manufacturing Science and Technology,2020,31:431-438. [38] GUO N,FU Y L,WANG Y Z,et al. Microstructure and mechanical properties in friction stir welded 5A06 aluminum alloy thick plate[J]. Materials & Design,2016,113:273-283. [39] 张铁浩,刘思奇,张云鹏,等. 6082铝合金42 mm厚型材双面FSW焊接接头的组织与性能[J]. 轻合金加工技术,2018,46(4):57-63. ZHANG Tiehao,LIU Siqi,ZHANG Yunpeng,et al. Microstructure and properties of double-sided friction-stir welded joint of 42 mm 6082 aluminum alloy profile[J]. Light Alloy Fabrication Technology,2018,46(4):57-63. [40] XU W F,LIU J H. Microstructure evolution along thickness in double-side friction stir welded 7085 Al alloy[J]. Transactions of Nonferrous Metals Society of China,2015,25(10):3212-3222. [41] 林松,贺晓龙. 7N01铝合金双面搅拌摩擦焊接头的组织与性能[J]. 机械工程材料,2020,44(9):82-86,102. LIN Song,HE Xiaolong. Microstructure and properties of double-sided friction stir welded joint of 7N01 aluminum alloy[J]. Materials for Mechanical Engineering,2020,44(9):82-86,102. [42] 杨超. 6000系铝合金双面/双轴肩搅拌摩擦焊接接头组织与性能研究[D]. 合肥:中国科学技术大学,2020. YANG Chao. Microstructure and mechanical properties of double-side and bobbib-tool friction stir welded joints of 6000 series aluminum alloys[D]. Hefei:University of Science and Technology of China,2020. [43] LIU X Q,LIU H J,WANG T H,et al. Correlation between microstructures and mechanical properties of high-speed friction stir welded aluminum hollow extrusions subjected to axial forces[J]. Journal of Materials Science & Technology,2018,34(1):102-111. [44] AZEEZ S T,AKINLABI E T. Effect of processing parameters on microhardness and microstructure of a double-sided dissimilar friction stir welded aa6082-t6 and aa7075-t6 aluminum alloy[J]. Materials Today:Proceedings,2018,5(9):18315-18324. [45] ESMAILY M,MORTAZAVI N,OSIKOWICZ W,et al. Bobbin and conventional friction stir welding of thick extruded AA6005-T6 profiles[J]. Materials & Design,2016,108:114-125. [46] 赵丽敏,聂盼. 6061铝合金厚板搅拌摩擦焊接头组织与耐蚀性[J]. 焊接,2017(8):51-55,71. ZHAO Lipan,NIE Pan. Microstructure and corrosion resistance of friction stir welded joint of 6061 aluminum alloy thick plate[J]. Welding & Joining,2017(8):51-55,71. [47] 荆洪阳,丰琪,徐连勇,等. 6063-T6铝合金搅拌摩擦焊组织与力学性能研究[J]. 机械工程学报,2020,56(8):13-19. JING Hongyang,FENG Qi,XU Lianyong,et al. Microstructure and mechanical properties of friction stir welds on 6063-T6 aluminum alloy[J]. Journal of Mechanical Engineering,2020,56(8):13-19. [48] XU W F,WANG H,LUO Y X,et al. Mechanical behavior of 7085-T7452 aluminum alloy thick plate joint produced by double-sided friction stir welding:Effect of welding parameters and strain rates[J]. Journal of Manufacturing Processes,2018,35:261-270. [49] YANG C,ZHANG J F,MA G N,et al. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. Journal of Materials Science & Technology,2020,41:105-116. [50] DU C C,WANG X,PAN Q H,et al. Correlation between microstructure and mechanical properties of 6061-T6 double-side FSW joint[J]. Journal of Manufacturing Processes,2019,38:122-134. [51] 张欣. AZ31镁合金搅拌摩擦焊焊接接头高周疲劳断裂行为研究[D]. 太原:太原理工大学,2017. ZHANG Xin. Study on high-cycle fatigue fracture behavior of friction stir welded joint of AZ31 magnesium alloy[D]. Taiyuan:Taiyuan University of Technology,2017. [52] 刘杰,何广忠,屈志军. 84 mm厚6082铝合金型材搅拌摩擦焊双面焊工艺研究[J]. 焊接技术,2018,47(9):148-150. LIU Jie,HE Guangzhong,QU Zhijun. Study on double-sided friction stir welding process of 84 mm thick 6082 aluminum alloy profiles[J]. Welding Technology,2018,47(9):148-150. [53] 刘会杰,冯吉才,陈迎春,等. 5mm厚铝合金双面搅拌摩擦焊接[J]. 焊接学报,2004(5):9-12,129. LIU Huijie,FENG Jicai,CHEN Yingchun,et al. 5 mm thick aluminum alloy double-sided friction stir welding[J]. Transactions of The China Welding Institution,2004(5):9-12,129. [54] KUMAR A R,VARGHESE S,SIVAPRAGASH M. A comparative study of the mechanical properties of single and double-sided friction stir welded aluminium joints[J]. Procedia Engineering,2012,38:3951-3961. [55] PITCHIPOO P,MUTHIAH A,JEYAKUMAR K,et al. Friction stir welding parameter optimization using novel multi objective dragonfly algorithm[J]. International Journal of Lightweight Materials and Manufacture,2021,4(4):460-467. [56] PRIYASUDANA D,CRISDION S A,PISPITASARI P,et al. Double side friction stir welding effect on mechanical properties and corrosion rate of aluminum alloy AA6061[J]. Heliyon,2023,9(2):e13366. [57] DARMADI D B,TALICE M. Improving the strength of friction stir welded joint by double side friction welding and varying pin geometry[J]. Engineering Science and Technology,an International Journal,2021,24(3):637-647. [58] PADHY G K,WU C S,CAO S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications:A review[J]. Journal of Materials Science & Technology,2018,34(1):1-38. [59] 弥海龙,吴锡坤,戴海桃,等. 搅拌头转速对6063铝合金双面搅拌摩擦焊接头组织与性能的影响[J]. 有色金属加工,2022,51(2):27-30. MI Hailong,WU Xikun,Dai Haitao,et al. Effect of stirring head speed on microstructure and properties of 6063 aluminum alloy double-sided friction stir welding joint[J]. Nonferrous Metals Processing,2022,51(2):27-30. [60] 秦丰,周军,侯振国,等. 6082铝合金双面搅拌摩擦焊接头组织与性能[J]. 焊接学报,2021,42(2):75-80,102. QIN Feng,ZHOU Jun,HOU Zhenguo,et al. Microstructure and properties of 6082 aluminum alloy double-sided friction stir welded joint[J]. Transactions of The China Welding Institution,2021,42(2):75-80,102. [61] NOSRATI H G,YAZDANI N M,KHORAN M. Double-sided friction stir welding of AA2024-T6 joints:Mathematical modeling and optimization[J]. CIRP Journal of Manufacturing Science and Technology,2022,36:1-11. [62] 陈亚斌,王韬,代许晓,等. 6005A-T6铝合金双面搅拌摩擦焊接头性能研究[J]. 今日制造与升级,2022,11:89-91. CHEN Yabin,WANG Tao,DAI Xuxiao,et al. Study on properties of double-sided friction stir welded joint of 6005A-T6 aluminum alloy[J]. Manufacture & Upgrading Today,2022,11:89-91. [63] LI G H,CHEN T,FU B L,et al. Semi-stationary shoulder bobbin-tool:A new approach in tailoring macrostructure and mechanical properties of bobbin-tool friction stir welds in magnesium alloy[J]. Journal of Materials Processing Technology,2023,317:117984. [64] YANG C,WANG Z L,ZHANG M,et al. Enhancing joint strength of bobbin tool friction stir welded Al-Mg-Si alloy via post-weld aging process[J]. Journal of Materials Research and Technology,2022,21:4688-4698. [65] LI G H,ZHOU L,ZHANG H F,et al. Evolution of grain structure,texture and mechanical properties of a Mg-Zn-Zr alloy in bobbin friction stir welding[J]. Materials Science and Engineering:A,2021,799:140267. [66] LI W Y,FU T,HÜTSCH L,et al. Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31[J]. Materials & Design,2014,64:714-720. [67] WANG F F,LI W Y,SHEN J,et al. Improving weld formability by a novel dual-rotation bobbin tool friction stir welding[J]. Journal of Materials Science & Technology,2018,34(1):135-139. [68] 李超,马康,郝云飞,等. 2219铝合金双轴肩搅拌摩擦焊工艺及工程应用[J]. 焊接,2021(5):52-57,66. LI Chao,MA Kang,HAO Yunfei,et al. Bobbin tool friction stir welding process and engineering application of 2219 aluminum alloy[J]. Welding & Joining,2021(5):52-57,66. [69] LIU Zhe,GUAN Wei,LI Huijun,et al. Study on the relationship between welding force and defects in bobbin tool friction stir welding[J]. Journal of Manufacturing Processes,2022,84:1122-1132. [70] SAHU P K,VASUDEVAN N P,DAS B,et al. Assessment of self-reacting bobbin tool friction stir welding for joining AZ31 magnesium alloy at inert gas environment[J]. Journal of Magnesium and Alloys,2019,7(4):661-671. [71] ENTRINGER J,REIMANN M,NORMAN A,et al. Influence of Cu/Li ratio on the microstructure evolution of bobbin-tool friction stir welded Al-Cu-Li alloys[J]. Journal of Materials Research and Technology,2019,8(2):2031-2040. [72] ESMAILY M,MORTAZAVI N,ODIKOWICZ W,et al. Corrosion behaviour of friction stir-welded AA6005-T6 using a bobbin tool[J]. Corrosion Science,2016,111:98-109. [73] LI G H,ZHOU L,ZHANG J F,et al. Macrostructure,microstructure and mechanical properties of bobbin tool friction stir welded ZK60 Mg alloy joints[J]. Journal of Materials Research and Technology,2020,9(4):9348-9361. [74] WANG Z L,ZHANG Z,XUE P,et al. Defect formation,microstructure evolution, and mechanical properties of bobbin tool friction-stir welded 2219-T8 alloy[J]. Materials Science and Engineering:A,2022,832:142414. [75] LI G H,ZHOU L,ZHANG H F,et al. Effects of traverse speed on weld formation, microstructure and mechanical properties of ZK60 Mg alloy joint by bobbin tool friction stir welding[J]. Chinese Journal of Aeronautics,2021,34(12):238-250. [76] LI G H,ZHOU L,LUO S F,et al. Quality improvement of bobbin tool friction stir welds in Mg-Zn-Zr alloy by adjusting tool geometry[J]. Journal of Materials Processing Technology,2020,282:116685. [77] WANG F F,LI W Y,SHEN J,et al. Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al-Li alloy[J]. Materials & Design,2015,86:933-940. [78] 杜正勇. 2219铝合金双轴肩搅拌摩擦焊工艺优化及接头组织性能研究[D]. 哈尔滨:哈尔滨工业大学,2018. DU Zhengyong. Research on optimization of bobbin tool friction stir welding process and joint microstructure-properties for 2219 aluminum alloy[D]. Harbin:Harbin Institute of Technology,2018. [79] GOEBEL J,REIMANN M,NORMAN A,et al. Semi-stationary shoulder bobbin tool friction stir welding of AA2198-T851[J]. Journal of Materials Processing Technology,2017,245:37-45. [80] XU W F,LUO Y X,ZHANG W,et al. Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate[J]. Journal of Materials Science & Technology,2018,34(1):173-184. [81] 戴忠晨,陈姝君,金文涛,等. 6005A-T6铝合金低转速双轴肩搅拌摩擦焊接头组织及力学性能[J]. 热加工工艺,2019,48(15):40-43. DAI Zhongchen,CHEN Shujun,JIN Wentao,et al. Microstructure and mechanical properties of low rotation speed bobbin tool friction stir welding joint of 6005A-T6 aluminum alloy[J]. Hot Working Technology,2019,48(15):40-43. [82] YANG C,NI D R,XUE P,et al. A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates[J]. Materials Characterization,2018,145:20-28. [83] WU D,LI W Y,GAO Y J,et al. Effect of an improved pin design on weld formability and mechanical properties of adjustable-gap bobbin-tool friction stir welded Al-Cu aluminum alloy joints[J]. Journal of Manufacturing Processes,2020,58:1182-1188. [84] WAN L,HUANG Y X,GUO Weiqiang,et al. Mechanical properties and microstructure of 6082-T6 aluminum alloy joints by self-support friction stir welding[J]. Journal of Materials Science & Technology,2014,30(12):1243-1250. [85] LI G H,ZHOU L,LUO S F,et al. Microstructure and mechanical properties of bobbin tool friction stir welded ZK60 magnesium alloy[J]. Materials Science and Engineering:A,2020,776:138953. [86] ASADI P,MIRZAEI M H,AKBARI M. Modeling of pin shape effects in bobbin tool FSW[J]. International Journal of Lightweight Materials and Manufacture,2022,5(2):162-177. [87] HILGERT J,SCHMIDT H,SANTOS J,et al. Thermal models for bobbin tool friction stir welding[J]. Journal of Materials Processing Technology,2011,211(2):197-204. [88] WANG G Q,ZHAO Y H,TANG Y Y. Research progress of bobbin tool friction stir welding of aluminum alloys:A review[J]. Acta Metallurgica Sinica (English Letters),2020,33(1):13-29. [89] ZHANG Y N,CAO X,LAROSE S,et al. Review of tools for friction stir welding and processing[J]. Canadian Metallurgical Quarterly,2012,51(3):250-261. [90] DUMPALA L,CHANDRA P H,SRIRAM N. Development of bobbin tool and influence of its design parameters on FSW joint[J]. Materials Today:Proceedings,2022,56(3):1582-1587. [91] KAMBLE L V,SOMAN S N. Influence of bobbin tool design on quality of welds made by FSW of aluminium alloys[J]. Materials Today:Proceedings,2019,18(7):5177-5184. [92] THOMAS W M,WIESNERC S,MARKS D J,et al. Conventional and bobbin friction stir welding of 12% chromium alloy steel using composite refractory tool materials[J]. Science & Technology of Welding & Joining,2009,14(3):247-253. [93] LIU H J,HOU J C,GUO H. Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy[J]. Materials & Design,2013,50:872-878. [94] 张颖川,马国栋,代鹏,等. 6061-T6铝合金中空薄壁型材双轴肩搅拌摩擦焊工具设计与工艺分析[J]. 焊接学报,2022,43(6):88-95,118. ZHANG Yingchuan,MA Guodong,DAI Peng,et al. Bobbin tool friction stir welding of 6061-T6 aluminum alloy hollow thin-walled profiles[J]. Transactions of The China Welding Institution,2022,43(6):88-95,118. [95] 夏佩云,尹玉环,赵慧慧,等. 厚板双轴肩搅拌摩擦焊温度场及流场数值模拟[J]. 电焊机,2018,48(3):294-299. XIA Peiyun,YIN Yuhuan,ZHAO Huihui,et al. Numerical simulation of temperature and flow for bobbin tool friction stir welding of thick plates[J]. Electric Welding Machine,2018,48(3):294-299. [96] FUSE K,BADHEKA V. Effect of shoulder diameter on bobbin tool friction stir welding of AA6061-T6 alloy[J]. Materials Today:Proceedings,2021,42(2):810-815. [97] SUED M K,PONS D,LAVROFF J,et al. Design features for bobbin friction stir welding tools:Development of a conceptual model linking the underlying physics to the production process[J]. Materials & Design,2014,54:632-643. [98] ZHANG H J,WANG M,ZHANG X,et al. Microstructural characteristics and mechanical properties of bobbin tool friction stir welded 2A14-T6 aluminum alloy[J]. Materials & Design,2015,65:559-566. [99] KHALID E,SHUNMUGASAMY V C,MANSOOR B. Microstructure and tensile behavior of a Bobbin friction stir welded magnesium alloy[J]. Materials Science and Engineering:A,2022,840:142861. [100] 冯家铖. 6061-T6铝合金厚板双轴肩搅拌摩擦焊接头的组织及性能研究[D]. 长春:长春工业大学,2022. FENG Jiacheng. Study on microstructures and properties of bobbin tool friction stir welding joints of 6061-T6 thick plate aluminum alloy[D]. Changchun:Changchun University of Technology,2022. [101] 李于朋. 6082-T6铝合金双轴肩搅拌摩擦焊接头的组织与性能研究[D]. 长春:吉林大学,2020. LI Yupeng. Study on microstructures and properties of bobbin tool friction stir welding joints of 6082-T6 aluminum alloy[D]. Changchun:Jilin University,2020. [102] CHU Q,LI W Y,WU D,et al. In-depth understanding of material flow behavior and refinement mechanism during bobbin tool friction stir welding[J]. International Journal of Machine Tools and Manufacture,2021,171:103816. [103] 谢利,王江涛,卢雅琳,等. 双轴肩搅拌摩擦焊对7075铝合金组织和性能的影响[J]. 电焊机,2019,49(2):55-59. XIE Li,WANG Jiangtao,LU Yalin,et al. Microstructure and properties of bobbin-tool FSW for the 7075 aluminum alloy[J]. Electric Welding Machine,2019,49(2):55-59. [104] 刘亮. 6082-T6铝合金双轴肩搅拌摩擦焊接头微观组织及力学性能的研究[D]. 长春:吉林大学,2019. LIU Liang. Study on microstructures and properties of bobbin tool friction stir welding joints of 6082-T6 aluminum alloy[D]. Changchun:Jilin University,2019. [105] TRUEBA L,TORRES M A,JOHANNES L B,et al. Process optimization in the self-reacting friction stir welding of aluminum 6061-T6[J]. International Journal of Material Forming,2018,11(4):559-570. [106] 鱼海东,崔国华,张振山,等. 搅拌摩擦焊双轴肩搅拌针产热模型与温度场研究[J]. 轻工机械,2019,37(4):35-41. YU Haidong,CUI Guohua,ZHANG Zhenshan,et al. Mathematical thermal model and thermal filed for bobbin tool friction stir welding[J]. Light Industry Machinery,2019,37(4):35-41. [107] CHEN S J,LU A L,YANG D L,et al. Analysis on flow pattern of bobbin tool friction stir welding for 6082 aluminum[J]. Proceedings of International Joint Symposium on Joining and Welding,2013:353-358. [108] SEIDEL T U,REYNOLDS A P. Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique[J]. Metallurgical & Materials Transactions A,2001,32(11):2879-2884. [109] OUYANG J H,KOVACEVIC R. Material flow and microstructure in the friction stir butt welds of the same and dissimilar aluminum alloys[J]. Journal of Materials Engineering and Performance,2002,11(1):51-63. [110] CHEN Z W,PASANG T,QI Y. Shear flow and formation of nugget zone during friction stir welding of aluminium alloy 5083-O[J]. Materials Science and Engineering:A,2008,474(1-2):312-316. [111] CHEN Z W,CUI S. On the forming mechanism of banded structures in aluminium alloy friction stir welds[J]. Scripta Materialia,2008,58(5):417-420. [112] LIU Xiaochao,WU Chuansong,PADHY G K. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding[J]. Scripta Materialia,2015,102:95-98. [113] XU W F,LIU J H,CHEN D L. Material flow and core/multi-shell structures in a friction stir welded aluminum alloy with embedded copper markers[J]. Journal of Alloys and Compounds,2011,509(33):8449-8454. [114] 郝云飞,侯明,韩忠帅,等. 2219薄板铝合金浮动式双轴肩搅拌摩擦焊接及组织性能分析[J]. 宇航材料工艺,2020,50(1):63-70. HAO Yunfei,HOU Ming,HAN Zhongshuai,et al. Analysis of weld structure and mechanical property for 2219 thin aluminum alloy joints welded by floating bobbin friction stir welding[J]. Aerospace Materials and Technology,2020,50(1):63-70. [115] WU D,LI W Y,LIU X C,et al. Effect of material configuration and welding parameter on weld formability and mechanical properties of bobbin tool friction stir welded Al-Cu and Al-Mg aluminum alloys[J]. Materials Characterization,2021,182:111518. [116] 刘西畅,李文亚,高彦军,等. 铝合金双轴肩搅拌摩擦焊过程材料流动行为[J]. 焊接学报,2021,42(3):48-56,101. LIU Xichang,LI Wenya,GAO Yanjun,et al. Material flow behavior of aluminum alloy during bobbin tool friction stir welding process[J]. Transactions of The China Welding Institution,2021,42(3):48-56,101. [117] TANG J X,SHI L,WU C S,et al. Development of novel double-side friction stir Z shape butt-lap welding process for dissimilar joining of 12 mm medium-thick Al/Cu plates[J]. Materials Letters,2023,331:133445. [118] WANG X P,MORISADA Y,FUJII H. Interface development and microstructure evolution during double-sided friction stir spot welding of magnesium alloy by adjustable probes and their effects on mechanical properties of the joint[J]. Journal of Materials Processing Technology,2021,294:117104. [119] WANG X P,MORISADA Y,FUJII H. Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys by adjustable probes[J]. Journal of Materials Science & Technology,2021,85:158-168. [120] WANG X P,MORISADA Y,FUJII H. High-strength Fe/Al dissimilar joint with uniform nanometer-sized intermetallic compound layer and mechanical interlock formed by adjustable probes during double-sided friction stir spot welding[J]. Materials Science and Engineering:A,2021,809:141005. [121] 唐益爽,邹阳帆,李文亚,等. 协同双面搅拌摩擦焊接6061铝合金工艺[J]. 电焊机,2023,53(3):72-76,110. TANG Yishuang,ZOU Yangfan,LI Wenya,et al. Synergistic double-sided friction stir welding of 6061 aluminum alloy[J]. Electric Welding Machine,2023,53(3):72-76,110. [122] CHU Q,LI W Y,HOU H L,et al. On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy[J]. Journal of Materials Science & Technology,2019,35(5):784-789. |
[1] | 孔玲, 王玉辉, 杨浩坤, 彭艳. Fe-Mn-Al-C系奥氏体基低密度钢使役性能研究进展[J]. 机械工程学报, 2024, 60(8): 34-47. |
[2] | 任志英, 黄子豪, 方荣政, 王秦伟, 莫继良, 秦红玲. 金属橡胶无序式网格互穿结构的热力学性能研究[J]. 机械工程学报, 2024, 60(8): 165-175. |
[3] | 李力, 王一轩, 罗芬, 张文涛, 赵巍, 李小强. 钎焊时间对TiH2-65Ni+TiB2钎料钎焊连接TiAl合金接头的影响[J]. 机械工程学报, 2024, 60(8): 176-185. |
[4] | 陈伟, 赵杰, 朱利斌, 曹海波. 增材制造低活化钢研究现状及展望[J]. 机械工程学报, 2024, 60(7): 312-333. |
[5] | 郑洋, 赵梓昊, 刘伟, 余政哲, 牛伟, 雷贻文, 孙荣禄. 高性能镁合金增材制造技术研究进展[J]. 机械工程学报, 2024, 60(7): 385-400. |
[6] | 鲍鑫宇, 麻永林, 程桥, 苏怡卉, 王杰, 邢淑清. 脉冲磁场熔体处理对Al-Si-Mg-Cu-Ni合金DC铸造凝固组织和力学性能的影响[J]. 机械工程学报, 2024, 60(6): 279-286. |
[7] | 张婷婷, 许振波, 王艳, 卞功波, 王涛, 王文先. 高频脉冲电流辅助镁/铝合金一步轧焊复合板制备及界面接合机理[J]. 机械工程学报, 2024, 60(4): 305-315. |
[8] | 周甜, 蔡力勋, 韩光照. 用于延性材料力学性能测定的圆柱平面-小冲杆试验新方法与应用[J]. 机械工程学报, 2024, 60(4): 316-325. |
[9] | 高强, 王健, 张严, 郑旭阳, 吕昊, 殷国栋. 拓扑优化方法及其在运载工程中的应用与展望[J]. 机械工程学报, 2024, 60(4): 369-390. |
[10] | 唐九兴, 石磊, 武传松, 吴明孝, 高嵩. 中厚板铝/铜异种金属双面搅拌摩擦接头微观组织与力学性能[J]. 机械工程学报, 2024, 60(20): 88-98. |
[11] | 林智雄, 邵震, 梁鑫裕, 崔雷, 王东坡, 谢燕, 黄一鸣, 杨立军. 2219铝合金拉拔式摩擦塞补焊成形过程分析[J]. 机械工程学报, 2024, 60(20): 144-152. |
[12] | 吴洁, 沈以赴, 黄国强. 2024铝合金填丝TIG焊接头搅拌摩擦加工组织和性能研究[J]. 机械工程学报, 2024, 60(20): 153-161. |
[13] | 黄浩, 单忠德, 张丽娇, 孙正, 郭子桐, 刘检华, 金鹏. 异形截面复合材料构件成形及力学性能预测方法研究[J]. 机械工程学报, 2024, 60(2): 107-118. |
[14] | 高恺, 顾红历, 李坤. Cr、Si微量元素对钢/铝感应静压焊接接头组织及性能的影响[J]. 机械工程学报, 2024, 60(2): 178-187. |
[15] | 王刚, 谷诤巍, 于歌, 李欣. 热成形工艺条件下7075-H18铝合金板材塑性流动行为的本构建模[J]. 机械工程学报, 2024, 60(2): 188-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||