机械工程学报 ›› 2024, Vol. 60 ›› Issue (13): 281-296.doi: 10.3901/JME.2024.13.281
潘杰1,2, 于靖军2, 裴旭2
收稿日期:
2023-10-23
修回日期:
2024-05-29
出版日期:
2024-07-05
发布日期:
2024-08-24
作者简介:
潘杰,男,1991年出生,博士。主要研究方向为蛇形臂机器人、柔性手爪、智能巡检装备。E-mail:panjie@buaa.edu.cn;于靖军(通信作者),男,1974年出生,博士,教授,博士研究生导师。主要研究方向为机器人机构学、精密机械设计等。E-mail:jjyu@buaa.edu.cn;裴旭,男,1979年出生,博士,副教授。主要研究方向为机器人机构学和柔性机构等。E-mail:peixu@buaa.edu.cn
基金资助:
PAN Jie1,2, YU Jingjun2, PEI Xu2
Received:
2023-10-23
Revised:
2024-05-29
Online:
2024-07-05
Published:
2024-08-24
摘要: 手爪是作业型机器人系统中重要组成部分,其作业形式和性能决定着机器人的整体能力。通过对手爪的创新设计可有效降低机器人对材料加工、零部件装配、运动感知和控制算法开发等依赖,显著提升机器人对复杂作业环境和对象的自适应能力。当前机器人手爪的种类主要分为刚性手爪和柔性手爪两大类。相比刚性手爪,柔性手爪在未知环境下作业、夹持几何非规则物体、夹持表面易碎物品和安全人机交互等方面具有良好的优势。与此同时,柔性手爪在实现柔顺性变形同时也存在因结构刚度不足而导致输出力小、操作精度差等问题,目前尚未被很好地解决,因此如何在保证柔性手爪柔顺变形的同时保持手爪的载荷输出能力是当前亟需解决的问题。针对柔性手爪的机构设计和变刚度技术共性话题,结合提升柔性手爪的形状自适应性和作业载荷能力的背景需求,从柔性手爪的构型设计和变刚度技术两个方面详细分析了柔性手爪在发展中所取得的显著进展和不足,系统总结了柔性手爪的研制技术和所面临的主要挑战,为柔性手爪的多功能化和智能化提供新思路,拓展柔性手爪的应用领域,提升机器人的整体作业能力。
中图分类号:
潘杰, 于靖军, 裴旭. 柔性手爪机构设计与变刚度技术研究发展综述[J]. 机械工程学报, 2024, 60(13): 281-296.
PAN Jie, YU Jingjun, PEI Xu. Development of Flexible Gripper Mechanism Design and Variable Stiffness Technology Research[J]. Journal of Mechanical Engineering, 2024, 60(13): 281-296.
[1] 丁汉. 机器人与智能制造技术的发展思考[J]. 机器人技术与应用, 2016(4):7-10. DING Han. The think of robotics and intelligent manufacturing technology development[J]. Robot Technique and Application, 2016(4):7-10. [2] 刘辛军, 于靖军, 王国彪, 等. 机器人研究进展与科学挑战[J]. 中国科学基金, 2016, 30(5):425-431. LIU Xinjun, YU Jingjun, WANG Guobiao, et al. Research advances and scientific challenges in robotics[J]. China Science Foundation, 2016, 30(5):425-431. [3] XU K, SIMAAN N. An investigation of the intrinsic force sensing capabilities of continuum robots[J]. IEEE Transactions on Robotics, 2008, 24(3):576-587. [4] 王田苗, 陶永. 我国工业机器人技术现状与产业化发展战略[J]. 机械工程学报, 2014, 50(9):1-13. WANG Tianmiao, TAO Yong. Research status and industrialization development strategy of Chinese industrial robot[J]. Journal of Mechanical Engineering, 2014, 50(9):1-13. [5] KIM S, LASCHI C, TRIMMER B. Soft robotics:A bioinspired evolution in robotics[J]. Trends in Biotechnology, 2013, 31(5):287-294. [6] 王田苗, 郝雨飞, 杨兴帮, 等. 软体机器人:结构, 驱动, 传感与控制[J]. 机械工程学报, 2017, 53(13):1-13. WANG Tianmiao, HAO Yufei, YANG Xingbang, et al. Soft robotics:structure, actuation, sensing and control[J]. Journal of Mechanical Engineering, 2017, 53(13):1-13. [7] 李海利, 姚建涛, 周盼, 等. 无系留大负载软体抓持机器人研究发展综述[J]. 机械工程学报, 2020, 56(19):28-42. LI Haili, YAO Jiantao, ZHOU Pan, et al. Untethered, high-load soft gripping robots:A review[J]. Journal of Mechanical Engineering, 2020, 56(19):28-42. [8] BILLARD A, KRAGIC D. Trends and challenges in robot manipulation[J]. Science, 2019, 6446:eaat8414. [9] 于靖军, 郝广波, 陈贵敏, 等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13):53-68. YU Jingjun, HAO Guangbo, CHEN Guimin, et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13):53-68. [10] CUI Y, LIU X J, DONG X, et al. Enhancing the universality of a pneumatic gripper via continuously adjustable initial grasp postures[J]. IEEE Transactions on Robotics, 2021, 37(5):1604-1618. [11] RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553):467-475. [12] LEE J Y, SEO Y S, PARK C, et al. Shape-adaptive universal soft parallel gripper for delicate grasping using a stiffness-variable composite structure[J]. IEEE Transactions on Industrial Electronics, 2020, 68(12):12441-12451. [13] ZHANG Y, ZHANG N, HINGORANI H, et al. Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing[J]. Advanced Functional Materials, 2019, 29(15):1-9. [14] ZENG X, SU H J. A high performance pneumatically actuated soft gripper based on layer jamming[J]. Journal of Mechanisms and Robotics, 2023, 15(1):014501. [15] 曹玉君, 尚建忠, 梁科山, 等. 软体机器人研究现状综述[J]. 机械工程学报, 2012, 48(3):25-33. CAO Yujun, SHANG Jianzhong, LIANG Keshan, et al. A review on the soft robotics[J]. Journal of Mechanical Engineering, 2012, 48(3):25-33. [16] ZHOU J, CHEN S, WANG Z. A soft-robotic gripper with enhanced object adaptation and grasping reliability[J]. IEEE Robotics and Automation Letters, 2017, 2(4):2287-2293. [17] HAM K B, HAN J, PARK Y J. Soft gripper using variable stiffness mechanism and its application[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19:487-494. [18] 魏树军, 王天宇, 谷国迎. 基于纤维增强型驱动器的气动软体抓手设计[J]. 机械工程学报, 2017, 53(13):29-38. WEI Shujun, WANG Tianyu, GU Guoying. Design of a soft pneumatic robotic gripper based on fiber reinforced actuator[J]. Journal of Mechanical Engineering, 2017, 53(13):29-38. [19] NIU D, JIANG W, YE G, et al. Photothermally triggered soft robot with adaptive local deformations and versatile bending modes[J]. Smart Materials and Structures, 2019, 28(2):02LT01. [20] FANG B, SUN F, WU L, et al. Multimode grasping soft gripper achieved by layer jamming structure and tendon-driven mechanism[J]. Soft Robotics, 2022, 9(2):233-249. [21] SHINTAKE J, CACUCCIOLO V, FLOREANO D, et al. Soft robotic grippers[J]. Advanced Materials, 2018, 30(29):1707035. [22] SHAH S, MANTI M, PASSETTI G, et al. Design and development of a bio-inspired, under-actuated soft gripper[C]// International Conference of the IEEE Engineering in Medicine & Biology Society. IEEE, 2015:3619-3622. [23] JEONG D, LEE K. Design and analysis of an origami-based three-finger manipulator[J]. Robotica, 2018, 36(2):261-274. [24] QU J, YU Z, TANG W, et al. Advanced technologies and applications of robotic soft grippers[J]. Advanced Materials Technologies, 2024:2301004. [25] ZHAO H, O’BRIEN K, LI S, et al. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides[J]. Science Robotics, 2016, 1(1):eaai7529. [26] ILIEVSKI F, MAZZEO A D, SHEPHERD R F, et al. Soft robotics for chemists[J]. Angewandte Chemie, 2011, 123(8):1930-1935. [27] HAO Y, GONG Z, XIE Z, et al. A soft bionic gripper with variable effective length[J]. Journal of Bionic Engineering, 2018, 15(2):220-235. [28] SUBRAMANIAM V, JAIN S, AGARWAL J, et al. Design and characterization of a hybrid soft gripper with active palm pose control[J]. The International Journal of Robotics Research, 2020, 39(14):1668-1685. [29] MAZZOLAI B, MARGHERI L, CIANCHETTI M, et al. Soft-robotic arm inspired by the octopus:II. From artificial requirements to innovative technological solutions.[J]. Bioinspiration & Biomimetics, 2012, 7(2):025005. [30] CECILIA L, MATTEO C, BARBARA M, et al. Soft robot arm inspired by the octopus[J]. Advanced Robotics, 2012, 26(7):709-727. [31] XIE Z, DOMEL A, AN N, et al. Octopus arm-inspired tapered soft actuators with suckers for improved grasping[J]. Soft Robot, 2020, 7(5):639-648. [32] WU M, ZHENG X, LIU R, et al. Glowing sucker octopus (stauroteuthis syrtensis)‐inspired soft robotic gripper for underwater self‐adaptive grasping and sensing[J]. Advanced Science, 2022, 9(17):2104382. [33] CHEN R, ZHANG C, SUN Y, et al. A paper fortune teller-inspired reconfigurable soft pneumatic gripper[J]. Smart Materials and Structures, 2021, 30(4):045002. [34] WANG Y, YANG X, CHEN Y, et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish[J]. Science Robotics, 2017, 2(10):eaan8072. [35] LI L, WANG S, ZHANG Y, et al. Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces[J]. Science Robotics, 2022, 7(66):eabm6695. [36] HAWKES E W, JIANG H, CUTKOSKY M R. Three- dimensional dynamic surface grasping with dry adhesion[J]. International Journal of Robotics Research, 2015, 35(8):943-958. [37] JIANG H, HAWKES E W, FULLER C, et al. A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity[J]. Science Robotics, 2017, 2(7):eaan4545. [38] QIU J, JI A, ZHU K, et al. A gecko-inspired robot with a flexible spine driven by shape memory alloy springs[J]. Soft Robotics, 2023, 10(4):713-723. [39] 杭观荣, 王振龙, 王扬威, 等. 肌肉性静水骨骼原理的仿乌贼鳍推进器[J]. 哈尔滨工业大学学报, 2009, 41(11):59-64. HANG G, WANG Z, WANG Y, et al. Squid fin-like propeller based on the principle of muscular hydrostat[J]. Journal of Harbin Institute of Technology, 2009, 41(11):59-64. [40] SMITH K K, KIER W M. TRUNKS, Tongues, and tentacles:Moving with skeletons of muscle[J]. American Scientist, 1988, 77(1):28-35. [41] GRISSOM M D, CHITRAKARAN V, DIENNO D, et al. Design and experimental testing of the octarm soft robot manipulator[C]// Unmanned Systems Technology VIII. SPIE, 2006, 6230:491-500. [42] GONG Z, CHEN B, LIU J, et al. An opposite-bending and-extension soft robotic manipulator for delicate grasping in shallow water[J]. Frontiers in Robotics and AI, 2019, 6:26. [43] JIANG H, WANG Z, JIN Y, et al. Hierarchical control of soft manipulators towards unstructured interactions[J]. The International Journal of Robotics Research, 2021, 40(1):411-434. [44] GUAN Q, SUN J, LIU Y, et al. Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk[J]. Soft Robotics, 2020, 7(5):597-614. [45] LI S, STAMPFLI J J, XU H J, et al. A vacuum-driven origami “magic-ball” soft gripper[C]// 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019:7401-7408. [46] TEOH Z E, PHILLIPS B T, BECKER K P, et al. Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms[J]. Science Robotics, 2018, 3(20):eaat5276. [47] ZHANG Z, NI X, GAO W, et al. Pneumatically controlled reconfigurable bistable bionic flower for robotic gripper[J]. Soft Robotics, 2022, 9(4):657-668. [48] YANG Y, VELLA K, HOLMES D P. Grasping with kirigami shells[J]. Science Robotics, 2021, 6(54):eabd6426. [49] HONG Y, CHI Y, WU S, et al. Boundary curvature guided programmable shape-morphing kirigami sheets[J]. Nature Communications, 2022, 13(1):1-13. [50] MOHAN V, BHAT A, MORASSO P. Muscleless motor synergies and actions without movements:From motor neuroscience to cognitive robotics[J]. Physics of Life Reviews, 2019, 30:89-111. [51] HAO Y, ZHANG S, FANG B, et al. A review of smart materials for the boost of soft actuators, soft sensors, and robotics applications[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1):1-16. [52] FOLLADOR M, CIANCHETTI M, LASCHI C. Development of the functional unit of a completely soft octopus-like robotic arm[C]// 20124th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE, 2012:640-645. [53] MARTINEZ R V, BRANCH J L, FISH C R, et al. Robotic tentacles with three‐dimensional mobility based on flexible elastomers[J]. Advanced Materials, 2013, 25(2):205-212. [54] HOANG T T, PHAN P T, THAI M T, et al. Bio-inspired conformable and helical soft fabric gripper with variable stiffness and touch sensing[J]. Advanced Materials Technologies, 2020, 5(12):2000724. [55] LIAO B, ZANG H, CHEN M, et al. Soft rod-climbing robot inspired by winding locomotion of snake[J]. Soft Robotics, 2020, 7(4):500-511. [56] LI H, YAO J, ZHOU P, et al. High-load soft grippers based on bionic winding effect[J]. Soft Robotics, 2019, 6(2):276-288. [57] LI H, ZHOU P, ZHANG S, et al. A high-load bioinspired soft gripper with force booster fingers[J]. Mechanism and Machine Theory, 2022, 177:105048. [58] HAO Y, BISWAS S, HAWKES E W, et al. A multimodal, enveloping soft gripper:shape conformation, bioinspired adhesion, and expansion-driven suction[J]. IEEE Transactions on Robotics, 2020, 37(2):350-362. [59] LI H, YAO J, LIU C, et al. A bioinspired soft swallowing robot based on compliant guiding structure[J]. Soft Robotics, 2020, 7(4):491-499. [60] KUMAR K, LIU J, CHRISTIANSON C, et al. A biologically inspired, functionally graded end effector for soft robotics applications[J]. Soft Robotics, 2017, 4(4):317-323. [61] QI Q, XIANG C, HO V, et al. A sea-anemone-inspired, multifunctional, bistable gripper[J]. Soft Robotics, 2022, 9(6):1040-1051. [62] ZHANG Z, LI X, YU X, et al. Magnetic actuation bionic robotic gripper with bistable morphing structure[J]. Composite Structures, 2019, 229:111422. [63] WANG Y Z, GUPTA U, PARULEKAR N, et al. A soft gripper of fast speed and low energy consumption[J]. Science China Technological Sciences, 2019, 62(1):31-38. [64] ZHANG Z, NI X, WU H, et al. Pneumatically actuated soft gripper with bistable structures[J]. Soft Robotics, 2022, 9(1):57-71. [65] SINATRA N R, TEEPLE C B, VOGT D M, et al. Ultragentle manipulation of delicate structures using a soft robotic gripper[J]. Science Robotics, 2019, 4(33):eaax5425.. [66] BECKER K, TEEPLE C, CHARLES N, et al. Active entanglement enables stochastic, topological grasping[J]. Proceedings of the National Academy of Sciences, 2022, 119(42):e2209819119. [67] JIANG P, YANG Y, CHEN M Z Q, et al. A variable stiffness gripper based on differential drive particle jamming[J]. Bioinspiration & Biomimetics, 2019, 14(3):036009. [68] BROWN E, RODENBERG N, AMEND J, et al. Universal robotic gripper based on the jamming of granular material[J]. Proceedings of the National Academy of Sciences, 2010, 107(44):18809-18814. [69] AMEND J R, BROWN E, RODENBERG N, et al. A positive pressure universal gripper based on the jamming of granular material[J]. IEEE transactions on robotics, 2012, 28(2):341-350. [70] LI Y , CHEN Y , YANG Y , et al. Passive particle jamming and its stiffening of soft robotic grippers[J]. IEEE Transactions on Robotics, 2017, 33(2):446-455. [71] JIANG P, YANG Y, CHEN M Z Q, et al. A variable stiffness gripper based on differential drive particle jamming[J]. Bioinspiration & Biomimetics, 2019, 14(3):036009. [72] LI Y, CHEN Y, YANG Y, et al. Soft robotic grippers based on particle transmission[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3):969-978. [73] KIM Y J, CHENG S, KIM S, et al. A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery[J]. IEEE Transactions on Robotics, 2013, 29(4):1031-1042. [74] ZHU M, MORI Y, WAKAYAMA T, et al. A fully multi-material three-dimensional printed soft gripper with variable stiffness for robust grasping[J]. Soft Robotics, 2019, 6(4):507-519. [75] CHEN R, SONG R, ZHANG Z, et al. Bio-inspired shape-adaptive soft robotic grippers augmented with electroadhesion functionality[J]. Soft robotics, 2019, 6(6):701-712. [76] BRANCADORO M, MANTI M, TOGNARELLI S, et al. Fiber jamming transition as a stiffening mechanism for soft robotics[J]. Soft Robotics, 2020, 7(6):663-674. [77] BRANCADORO M, MANTI M, GRANI F, et al. Toward a variable stiffness surgical manipulator based on fiber jamming transition[J]. Frontiers in Robotics and AI, 2019, 6:12. [78] AL ABEACH L A T, NEFTI-MEZIANI S, DAVIS S. Design of a variable stiffness soft dexterous gripper[J]. Soft Robotics, 2017, 4(3):274-284. [79] LIU L, ZHANG J, CAI Y, et al. Stiffness-tunable robotic gripper driven by dielectric elastomer composite actuators[J]. Smart Materials and Structures, 2020, 29(12):125013. [80] JIANG Y, CHEN D, LIU C, et al. Chain-like granular jamming:A novel stiffness-programmable mechanism for soft robotics[J]. Soft Robotics, 2019, 6(1):118-132. [81] ZHAO Y, SHAN Y, GUO K, et al. A soft continuum robot, with a large variable-stiffness range, based on jamming[J]. Bioinspiration & Biomimetics, 2019, 14(6):066007. [82] FARSHID A, REZA S, MEHRAN A. A continuum manipulator with phase changing alloy[C]// Robotics and Automation (ICRA), 2016 IEEE International Conference on, 2016, IEEE:758-764. [83] HAO Y, WANG T, WEN L. A programmable mechanical freedom and variable stiffness soft actuator with low melting point alloy[C]// International Conference on Intelligent Robotics and Applications. 2017:151-161. [84] PAN J, YU J, PEI X. A novel shape memory alloy actuated soft gripper imitated hand behavior[J]. Frontiers of Mechanical Engineering, 2022, 17(4):1-12. [85] RODRIGUE H, WANG W, KIM D R, et al. Curved shape memory alloy-based soft actuators and application to soft gripper[J]. Composite Structures, 2017, 176:398-406. [86] LEE J H, CHUNG Y S, RODRIGUE H. Application of SMA spring tendons for improved grasping performance[J]. Smart Materials and Structures, 2019, 28(3):035006. [87] JIN H, DONG E, XU M, et al. Soft and smart modular structures actuated by shape memory alloy (SMA) wires as tentacles of soft robots[J]. Smart Materials and Structures, 2016, 25(8):085026. [88] PAN J, YU J, LI G, et al. A lightweight bending actuator based on shape memory alloy and application to gripper[J]. Mechanics of Advanced Materials and Structures, 2022:1-11. [89] PAN J, YU J, CAO S, et al. Light and variable stiffness bending actuator bionic from inchworm[C]// International Conference on Intelligent Robotics and Applications. Springer, Cham, 2021:444-454. [90] LI J, SUN M, WU Z, et al. Design, analysis, and grasping experiments of a novel soft hand:hybrid actuator using shape memory alloy actuators, motors, and electromagnets[J]. Soft Robotics, 2020, 7(3). [91] LINGHU C, ZHANG S, WANG C, et al. Universal SMP gripper with massive and selective capabilities for multiscaled, arbitrarily shaped objects[J]. Science Advances, 2020, 6(7):eaay5120. [92] ZE Q, KUANG X, WU S, et al. Magnetic shape memory polymers with integrated multifunctional shape manipulation[J]. Advanced Materials, 2020, 32(4):1-8. [93] QIU Y, ZHANG E, PLAMTHOTTAM R, et al. Dielectric elastomer artificial muscle:Materials innovations and device explorations[J]. Accounts of Chemical Research, 2019, 52(2):316-325. [94] ANDERSON I A, GISBY T A, MCKAY T G, et al. Multi-functional dielectric elastomer artificial muscles for soft and smart machines[J]. Journal of Applied Physics, 2012, 112(4):1-20. [95] SHINTAKE J, ROSSET S, SCHUBERT B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators[J]. Advanced Materials, 2016, 28(2):231-238. [96] SUN W, YU J, CAI Y. Influence of magnetic field, magnetic particle percentages, and particle diameters on the stiffness of magnetorheological fluids[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(20):2312-2325. [97] REN L, SUN S, CASILLAS G G, et al. A liquid-metal- based magnetoactive slurry for stimuli‐responsive mechanically adaptive electrodes[J]. Advanced Materials, 2018, 30(35):1802595. [98] YANG J, SUN S, YANG X, et al. Equipping new SMA artificial muscles with controllable MRF exoskeletons for robotic manipulators and grippers[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6):4585-4596. [99] ZHUO S, ZHAO Z, XIE Z, et al. Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines[J]. Science Advances, 2020, 6(5):eaax1464. [100] JI Z, YAN C, YU B, et al. 3D printing of hydrogel architectures with complex and controllable shape deformation[J]. Advanced Materials Technologies, 2019, 4(4):1800713. [101] DONG X, RAFFLES M, GUZMAN S C, et al. Design and analysis of a family of snake arm robots connected by compliant joints[J]. Mechanism and Machine Theory, 2014, 77:73-91. |
[1] | 石琴, 蒋正信, 刘翼闻, 魏宇江, 胡晓松, 贺林. 基于分数阶模型的锂离子电池荷电状态估计[J]. 机械工程学报, 2024, 60(8): 224-232,244. |
[2] | 刘阔, 姜业明, 黄任杰, 李明禹, 陈虎, 王永青. 虑及颤振在线抑制的机床高效自适应加工技术研究[J]. 机械工程学报, 2024, 60(6): 104-113. |
[3] | 杨泽坤, 李韶华, 王振峰. 基于自适应变参数MPC的分布式驱动智能车轨迹跟踪控制[J]. 机械工程学报, 2024, 60(6): 363-377. |
[4] | 赵萍, 张涯婷, 程悦, 徐宏伟, 訾斌. 基于敏感度分析的单自由度Stephenson机构多目标轨迹综合方法[J]. 机械工程学报, 2024, 60(5): 59-69. |
[5] | 俞水, 吴晓, 郭鹏, 王志华. 基于首次穿越PDF自适应估计的时变可靠性分析方法[J]. 机械工程学报, 2024, 60(5): 264-275. |
[6] | 李守忠, 管昀毅, 马冲, 赵剑龙, 赵宏哲. 上肢康复机器人被动变刚度驱动器建模与试验[J]. 机械工程学报, 2024, 60(3): 47-54. |
[7] | 张永顺, 刘高仁, 刘志军, 刘振虎, 董海. 新型电磁球型手腕解耦驱动机理[J]. 机械工程学报, 2024, 60(19): 1-10. |
[8] | 刘小峰, 张天瑀, 韦代平, 柏林, 陈兵奎. 复合材料基体裂纹损伤演化的自适应粒子滤波预测[J]. 机械工程学报, 2024, 60(18): 32-42. |
[9] | 赵轲, 叶敏, 王瑞欣, 陆海, 刘孟孟, 邵海东. 基于模糊域自适应的源自由域旋转机械故障诊断方法[J]. 机械工程学报, 2024, 60(18): 43-52. |
[10] | 李志鹏, 马天雨, 刘金平, 向青松, 唐俊杰. 基于非对称性对抗训练的多源域自适应智能故障诊断方法[J]. 机械工程学报, 2024, 60(18): 76-88. |
[11] | 牛善帅, 王军政, 赵江波, 沈伟. 泵控电液伺服系统基于未知死区补偿的自适应鲁棒控制[J]. 机械工程学报, 2024, 60(18): 327-337. |
[12] | 李英田, 童鑫, 陈星宇, 莫菲, 孙众卿, 高兴, 王磊, 周小虎. 适应性气管支架植入机器人系统设计与验证[J]. 机械工程学报, 2024, 60(17): 72-79. |
[13] | 汪煜坤, 易彩, 汪浩, 周秋阳, 冉乐, 王靖元. PSD引导的自适应频带划分方法及其在轴承故障诊断中的应用[J]. 机械工程学报, 2024, 60(17): 179-193. |
[14] | 黄金杰, 赵欣. 3D打印中的分层计算研究进展[J]. 机械工程学报, 2024, 60(17): 235-262. |
[15] | 杨旭锋, 程鑫, 刘泽清. 一种融合交叉熵自适应抽样与ALK模型的可靠性分析方法[J]. 机械工程学报, 2024, 60(16): 73-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||