[1] 王伟,张勇,余敏,等. 从航空看轨道交通高强铝合金的发展趋势[J]. 材料导报,2018,32(S1):415-418. WANG Wei,ZHANG Yong,YU Min,et al. Development trend of high strength aluminum alloys for rail transit from the perspective of its application in aviation[J]. Materials Reports,2018,32(S1):415-418. [2] 宋燕利,郝川川,宁世儒,等. 极低频电脉冲处理对Al-Zn-Mg-Cu铝合金力学性能的影响规律与机理[J]. 机械工程学报,2022,58(10):68-77. SONG Yanli,HAO Chuanchuan,NING Shiru,et al. Effect of extremely low frequency pulse current treatment on the mechanical properties of Al-Zn-Mg-Cu aluminum alloy[J]. Journal of Mechanical Engineering,2022,58(10):68-77. [3] AKBARI M,KOVACEVIC R. An investigation on mechanical and microstructural properties of 316LSi parts fabricated by a robotized laser/wire direct metal deposition system[J]. Additive Manufacturing,2018,23:487-497. [4] JI Shaoshan,LIU Fan,SHI Tuo,et al. Effects of defocus distance on three-beam laser internal voaxial wire cladding[J]. Chinese Journal of Mechanical Engineering,2021,34(4):67-88. [5] DA SILVA A,FROSTEVARG J,VOLPP J,et al. Additive manufacturing by laser-assisted drop deposition from a metal wire[J]. Materials & Design,2021,209:109987. [6] 俞照辉,李东. 侧向送丝不锈钢光纤激光熔覆技术研究[J]. 热加工工艺,2015,44(24):134-137. YU Zhaohui,LI Dong. Investigation of laser cladding on stainless steel with wire feeding[J]. Hot Working Technology,2015,44(24):134-137. [7] WEN Peng,CAI Zhipeng,FENG Zhenhua,et al. Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel[J]. Optics & Laser Technology,2015,75:207-213. [8] LI Qingqing,CHEN Jie,WANG Xudong,et al. Process,microstructure and microhardness of GH3039 superalloy processed by laser metal wire deposition[J]. Journal of Alloys and Compounds,877:160330. [9] ÅKERFELDT P,ANTTI M L,PEDERSON R. Influence of microstructure on mechanical properties of laser metal wire-deposited Ti-6Al-4V[J]. Materials Science and Engineering:A,2016,674:428-437. [10] BRANDL E,GREITEMEIER D. Microstructure of additive layer manufactured Ti-6Al-4V after exceptional post heat treatments[J]. Materials Letters,2012,81:84-87. [11] 谭志俊,高双,何博. 激光增材制造金属零部件变形的研究现状[J]. 机械工程材料,2020,44(9):11-16. TAN Zhijun,GAO Shuang,HE Bo. Research status on the deformation of metal components by laser additive manufacturing[J]. Materials for Mechanical Engineering,2020,44(9):11-16. [12] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报,2014,35(10):2690-2698. WANG Huaming. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica ET Astronautica Sinica,2014,35(10):2690-2698. [13] 张吉平,石世宏,蒋伟伟,等. 三光束光内送丝激光熔覆温度场仿真分析与工艺优化[J]. 中国激光,2019,46(10):122-129. ZHANG Jiping,SHI Shihong,JIANG Weiwei,et al. Simulation analysis of temperature field and process optimization of laser cladding based on internal wire feeding of three beams[J]. Chinese Journal of Lasers,2019,46(10):122-129. [14] 四库,孙进. 45钢送丝激光熔覆成型基础工艺[J]. 制造技术与机床,2012,599(6):149-152. SINGARE Sekou,SUN Jin. The basic process of laser cladding fabrication with 45 carbon steel wire[J]. Manufacturing Technology & Machine Tool,2012,599(6):149-152. [15] DEMIR A G,BIFFI C A. Micro laser metal wire deposition of thin-walled Al alloy components:Process and material characterization[J]. Journal of Manufacturing Processes,2019,37:362-369. [16] 郭一蒙,彭勇,江俊龙. 4043铝合金激光熔丝增材制造工艺研究[J]. 热加工工艺,2019,48(5):245-247,255. GUO Yiming,PENG Yong,JIANG Junlong. Study on laser additive manufacturing technology with 4043 aluminum alloy melting wire[J]. Hot Working Technology,2019,48(5):245-247,255. [17] ZHANG Y N,CAO X,WANJARA P. Microstructure and hardness of fiber laser deposited Inconel 718 using filler wire[J]. The International Journal of Advanced Manufacturing Technology,2013,69(9-12):2569-2581. [18] ABIOYE T E,MCCARTNEY D G,CLARE A T. Laser cladding of Inconel 625 wire for corrosion protection[J]. Journal of Materials Processing Technology,2015,217:232-240. [19] ABIOYE T E,FARAYIBI P K,MCCARTNEY D G,et al. Effect of carbide dissolution on the corrosion performance of tungsten carbide reinforced Inconel 625 wire laser coating[J]. Journal of Materials Processing Technology,2016,231:89-99. [20] FROEND M,RIEKEHR S,KASHAEV N,et al. Process development for wire-based laser metal deposition of 5087 aluminium alloy by using fiber laser[J]. Journal of Manufacturing Processes,2018,34:721-732. [21] FROEND M,VENTZKE V,DORN F,et al. Microstructure by design:An approach of grain refinement and isotropy improvement in multi-layer wire-based laser metal deposition[J]. Materials Science and Engineering:A,2020,772:138635. [22] SILVA A D,WANG S,VOLPP J,et al. Vertical laser metal wire deposition of Al-Si alloys[J]. Procedia CIRP,2020,94:341-345. [23] WANG Xiang,ZHANG Jie,NING Jie,et al. Fe element promotes the transformation from columnar to equiaxed grains and the formation of ultrafine microstructure of Ti-6Al-4V alloy by laser wire deposition[J]. Additive Manufacturing,2021,48:102442. [24] ARBO S M,PETROVIC S T,AUNEMO J,et al. On weldability of aerospace grade Al-Cu-Li alloy AA2065 by wire-feed laser metal deposition[J]. Journal of Advanced Joining Processes,2022,5:100096. [25] BOCK F E,HERRNRING J,FROEND M,et al. Experimental and numerical thermo-mechanical analysis of wire-based laser metal deposition of Al-Mg alloys[J]. Journal of Manufacturing Processes,2021,64:982-995. [26] 任朝晖,刘振,周世华,等. 钛合金激光熔丝增材制造的温度场与应力场模拟[J]. 东北大学学报,2020,41(4):551-556. REN Zhaohui,LIU Zhen,ZHOU Shihua,et al. Temperature field and stress field simulation of titanium alloy laser fuse additive manufacturing[J]. Journal of Northeastern University,2020,41(4):551-556. [27] 王泽昌. 激光熔丝合金钢增材制造温度场与应力场数值模拟[D]. 哈尔滨:哈尔滨工程大学,2021. WANG Zechang. Numerical simulation of temperature and stress field of laser and alloy steel wire additive manufacturing[D]. Harbin:Harbin Engineering University,2021. [28] 黄延禄,温宝贤,黄铭. 激光熔覆加工温度场特征与凝固组织形成[J]. 应用激光,2017,37(5):629-633. HUANG Yanlu,WEN Baoxian,HUANG Ming. Characteristics of the temperature field and formation of the microstructure for laser cladding processing[J]. Applied Laser,2017,37(5):629-633. [29] 柯林达,殷杰,朱海红,等. 钛合金薄壁件选区激光熔化应力演变的数值模拟[J]. 金属学报,2020,56(3):374-384. KE Linda,YIN Jie,ZHU Haihong,et al. Numerical simulation of stress evolution of thin-wall titanium parts fabricated by selective laser melting[J]. Acta Metallurgica Sinica,2020,56(3):374-384. [30] 张嘉,龙连春,吴奇. Inconel718微环形零件激光增材制造残余应力数值分析[J]. 机械工程学报,2021,57(18):172-181. ZHANG Jia,LONG Lianchun,WU Qi. Simulation of residual stress of SLM additive manufactured micro-annular Incone1718 components[J]. Journal of Mechanical Engineering,2021,57(18):172-181. [31] 刘婷,葛建彪. 激光增材制造高强AlSi7Mg铝合金构件工艺与组织调控研究[J]. 应用激光,2018,38(3):393-401. LIU Ting,GE Jianbiao. Tailoring of process and microstructure of high-strength AlSi7Mg aluminum alloy parts prepared by laser additive manufacturing[J]. Applied Laser,2018,38(3):393-401. [32] 张春华,张宁,张松,等. 6061铝合金表面激光熔覆温度场的仿真模拟[J]. 沈阳工业大学学报,2007,133(3):267-270,284. ZHANG Chunhua,ZHANG Ning,ZHANG Song,et al. Simulation of laser cladding temperature field on surface of 6061A1 alloy[J]. Journal of Shenyang University of Technology,2007,133(3):267-270,284. [33] FOTEINPOPULOS P,PAPACHARALAMPOPOULOS A,STAVROPOULOS P. On thermal modeling of additive manufacturing processes[J]. CIRP Journal of Manufacturing Science and Technology,2018,20:66-83. [34] DU Jun,WANG Xin,BAI Hao,et al. Numerical analysis of fused-coating metal additive manufacturing[J]. International Journal of Thermal Sciences,2017,114:342-351. [35] 胡红伟,丁雪萍,段宣明,等. AlSi10Mg铝合金选区激光熔化热行为的数值研究[J]. 热加工工艺,2016,45(20):53-57. HU Hongwei,DING Xueping,DUAN Xuanming,et al. Numerical study selective laser melting thermal behavior AlSi10Mg aluminum alloy[J]. Hot Working Technology,2016,45(20):53-57. [36] 蔡家轩,万乐,石世宏,等. 激光熔化沉积AlSi10Mg温度场对显微组织性能的影响[J]. 红外与激光工程,2022,51(5):230-239. CAI Jiaxuan,WAN Le,SHI Shihong,et al. Effects of temperature field on properties of micro-structure of AlSi10Mg with laser metal deposition[J]. Infrared and Laser Engineering,2022,51(5):230-239. [37] 邵盈恺,王玉玺,杨志斌,等. 基于焊缝熔深优化的7075铝合金等离子-MIG复合焊接热裂纹敏感性[J]. 金属学报,2018,54(4):547-556. SHAO Yingkai,WANG Yuxi,YANG Zhibin,et al. Plasma-MIG hybrid welding hot cracking susceptibility of 7075 aluminum alloy based on optimum of weld penetration[J]. Acta Metallurgica Sinica,2018,54(4):547-556. [38] 尤俊华,李想,马理. 喷射成形Al-Zn-Mg-Cu合金回归再时效过程的XRD分析[J]. 机械工程学报,2016,52(18):44-50. YOU Junhua,LI Xiang,MA Li. XRD study on retrogression and re-aging of spray formed Al-Zn-Mg-Cu alloy[J]. Journal of Mechanical Engineering,2016,52(18):44-50. [39] 万达远,李小强,赖佳明,等. 基于选择性激光熔化技术7075铝合金组织性能与裂纹的研究[J]. 应用激光,2019,39(01):1-8. WAN Dayuan,LI Xiaoqiang,LAI Jiaming,et al. Microstructure properties and crack of 7075 aluminum alloy based on selective laser melting technology[J]. Applied Laser,2019,39(01):1-8. [40] LIU Zhaoyang,QI Huan. Effects of substrate crystallographic orientations on crystal growth and microstructure formation in laser powder deposition of nickel-based superalloy[J]. Acta Materialia,2015(87):248-258. [41] HUNT J D. Solidification and casting of metals[M]. London:The Metal Society Press,1979:18-30. [42] 胡中文. 高强度铝合金Al7075增材制造组织与性能研究[D]. 贵阳:贵州大学,2021. HU Zhongwen. Study on microstructure and properties of high strength aluminum alloy A17075[D]. Guiyang:Guizhou University,2021. [43] 武梦瑶. TC4表面FeCoCrNiTix高熵合金激光熔覆层裂纹敏感性及形成机理研究[D]. 南京:南京航空航天大学,2021. WU Mengyao. Crack sensitivity and formation mechanism of laser cladded FeCoCrNiTix high entropy alloy on TC4 surface[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2021. [44] LABUDOVIC M,HU D,KOVACEVIC R. A three dimensional model for direct laser metal powder deposition and rapid prototyping[J]. Journal of Materials Science,2003,38:35-49. [45] 李悦. 电子束熔丝增材TC4钛合金的热-力耦合模拟及组织分析[D]. 哈尔滨:哈尔滨工业大学,2020. LI Yue. Analysis of organizational characteristics and thermal-mechanical behavior of TC4 titanium alloy with electron beam fuse additive electron beam solid freeform fabrication[D]. Harbin:Harbin Institute of Technology,2020. [46] 丁清苗,秦永祥,崔艳雨. 飞机蒙皮2A12铝合金搅拌摩擦焊的数值模拟研究[J]. 热加工工艺,2021,50(7):144-150. DING Qingmiao,QIN Yongxiang,CUI Yanyu. Numerical simulation study on friction stir welding of aircraft skin 2A12 aluminum alloy[J]. Hot Working Technology,2021,50(7):144-150. [47] 卢艳,郑世华,邢晓林. 7075铝合金激光焊接残余应力及变形的有限元数值模拟[J]. 热加工工艺,2013,42(21):200-203. LU Yan,ZHENG Shihua,XING Xiaolin. Finite element simulation of laser welding residual stress and deformation for 7075 aluminium alloy[J]. Hot Working Technology,2013,42(21):200-203. [48] LIU Zhaoyang,QI Huan. Effects of processing parameters on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy[J]. Journal of Materials Processing Technology,2015,216:19-27. [49] LU Z C,GAO Y,ZENG M Q,et al. Improving wear performance of dual-scale Al-Sn alloys:The role of Mg addition in enhancing Sn distribution and tribolayer stability[J]. Wear,2014,309(1-2):216-225. [50] ZHONG Shibiao,HAN Shuang,CHEN Jiqiang,et al. Microstructure and properties of 7075 aluminum alloy welding joint using different filler metals[J]. Materials Today Communications,2022,31:103260. [51] LIN Rui,LIU Bo,ZHANG Junjie,et al. Microstructure evolution and properties of 7075 aluminum alloy recycled from scrap aircraft aluminum alloys[J]. Journal of Materials Research and Technology,2022,19:354-367. |