机械工程学报 ›› 2023, Vol. 59 ›› Issue (6): 239-254.doi: 10.3901/JME.2023.06.239
杨续来1,2, 袁帅帅1, 杨文静1, 刘闯3, 杨世春4
收稿日期:
2022-06-28
修回日期:
2022-12-26
出版日期:
2023-03-20
发布日期:
2023-06-03
通讯作者:
杨世春(通信作者),男,1974 年出生,博士,教授,博士研究生导师。主要研究方向为电动汽车能源动力系统安全、高效优化理论及集成控制相关科学与技术。E-mail:yangshichun@buaa.edu.cn
作者简介:
杨续来,男,1983年出生,博士,教授,硕士研究生导师。主要研究方向为动力电池及其关键材料与工艺。E-mail:yangxl@hfuu.edu.cn;袁帅帅,男,1997年出生,硕士研究生。主要研究方向为动力电池关键材料。E-mail:ss_yuan007@163.com;杨文静,女,1997年出生,硕士研究生。主要研究方向为动力电池一致性分析。E-mail:1251942745@qq.com;刘闯,男,1979年出生,硕士,总经理。主要研究方向为新能源汽车运营及大数据分析应用。E-mail:1131583311@qq.com
基金资助:
YANG Xulai1,2, YUAN Shuaishuai1, YANG Wenjing1, LIU Chuang3, YANG Shichun4
Received:
2022-06-28
Revised:
2022-12-26
Online:
2023-03-20
Published:
2023-06-03
摘要: 动力电池作为新能源纯电动汽车的动力源,其能量密度与整车的续驶里程及安全性等密切相关,而锂离子电池具有高能量密度和长寿命等特点,是当前新能源汽车动力电池的主流选择。基于锂离子电池发展史和我国第1~48批《免征车辆购置税的新能源汽车车型目录》中2 000余款纯电动乘用车的锂离子动力电池能量密度数据,系统研究了锂离子动力电池能量密度演变趋势,回顾了我国锂离子动力电池能量密度的提升历程及其对推动新能源汽车发展起到的良好作用。在此基础上,从电极材料、电池工艺和成组结构等3个方面,剖析了锂离子动力电池能量密度提升技术方案的优势与不足;并从电池能量密度和安全性的关联性出发,总结了高能量密度电池在设计、制造和使用等全生命周期中的安全技术,展望了锂离子动力电池未来的发展趋势,为新能源汽车行业未来的健康发展提供参考。
中图分类号:
杨续来, 袁帅帅, 杨文静, 刘闯, 杨世春. 锂离子动力电池能量密度特性研究进展[J]. 机械工程学报, 2023, 59(6): 239-254.
YANG Xulai, YUAN Shuaishuai, YANG Wenjing, LIU Chuang, YANG Shichun. Research Progress on Energy Density of Li-ion Batteries for Evs[J]. Journal of Mechanical Engineering, 2023, 59(6): 239-254.
[1] FICHTNER M,EDSTRÖM K,AYERBE E,et al. Rechargeable batteries of the future-The state of the art from a BATTERY 2030+ perspective[J]. Advance Energy Materials,2021,12(17):2102904. [2] HØYER K. The history of alternative fuels in transportation:The case of electric and hybrid cars[J]. Utilities Policy,2008,16(2):63-71. [3] 成业. 电动汽车的六次蜕变[J]. 中国工业评论,2017(9):100-106. CHENG Ye. Six metamorphoses of electric vehicles[J]. China Computer Users,2017(9):100-106. [4] KURZWEI P. Encyclopedia of electrochemical power sources[M]. Amsterdam:Elsevier,2009. [5] VERMA S,MISHRA S,GAUR A,et al. A comprehensive review on energy storage in hybrid electric vehicle[J]. Journal of Traffic and Transportation Engineering,2021,8(5):621-637. [6] VISHNUMURTHY K,GIRISH K. A comprehensive review of battery technology for E-mobility[J]. Journal of the Indian Chemical Society,2021,98:100173. [7] PEREIRINHAA P,GONZÁLEZ M,CARRILERO I,et al. Main trends and challenges in road transportation electrification[J]. Transportation Research Procedia,2018,33:235-242. [8] 王震坡,黎小慧,孙逢春. 产业融合背景下的新能源汽车技术发展趋势[J]. 北京理工大学学报,2020,40(1):1-10. WANG Zhengpo,LI Xiaohui,SUN Fengchun. Development trends of new energy vehicle technology under industrial integration[J]. Transactions of Beijing Institute of Technology,2020,40(1):1-10. [9] 周哲人. 新能源在汽车领域应用中的能量密度分析及思考[J]. 交通节能与环保,2012,8(1):13-16. ZHOU Zheren. Analysis on energy density of new energy in automobile[J]. Energy Conservation & Environmental Protection in Transportation,2012,8(1):13-16. [10] LI W,ERICKSON E,MANTHIRAM A. High-nickel layered oxide cathodes for lithium-based automotive batteries[J]. Nature Energy,2020(5):26-34. [11] THACKERAY M,AMINE K. LiMn2O4 spinel and substituted cathodes[J]. Nature Energy,2021(6):566. [12] BERJOZA D,JURGENA I. Effects of change in the weight of electric vehicles on their performance characteristics[J]. Agronomy Research,2017,15(Suppl.1):952-963. [13] 中华人民共和国工业和信息化部. 中国汽车产业发展年报[R]. 北京:工业和信息化部装备工业发展中心,2021. Ministry of Industry and Information Technology of China. China automotive industry development annual report[R]. Beijing:Equipment Industry Development Center of the Ministry of Industry and Information Technology,2021. [14] BloombergNEF. Battery pack prices cited below $100/kWh for the first time in 2020,while market average sits at $137/kwh[EB/OL]//[2020-12-16]. https://about.bnef.com/blog/battery-pack-prices-cited-below-100-kwh-for-the-first-time-in-2020-while-market-average-sits-at-137-kwh. [15] 沈炎宾,陈立桅. 高能量密度动力电池材料电化学[J]. 科学通报,2020,65(2-3):117-126. SHEN Yanbin,CHEN Liwei. Materials electrochemistry for high energy density power batteries[J]. Chin. Sci. Bull.,2020,65(2-3):117-126. [16] MANTHIRAM A. An outlook on lithium ion battery technology[J]. ACS Central Science,2017(3):1063-1069. [17] ZU Chenxi,LI Hong. Thermodynamic analysis on energy densities of batteries[J]. Energy Environmental Science,2011(4):2614-2624. [18] 李文俊,徐航宇,杨琪,等. 高能量密度锂电池开发策略[J]. 储能科学与技术,2020,9(2):448-478. LI Wenjun,XU Hangyu,YANG Qi,et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology,2020,9(2):448-478. [19] ZUO Y,LI Biao,JIANG N,et al. A high-capacity O2- type Li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Advanced Materials,2018,30(16):1707255. [20] HU E,YU X,LIN R,et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release[J]. Nature Energy,2018(3):690-698. [21] WANG L,WU Z,ZOU J,et al. Li-free cathode materials for high energy density lithium batteries[J]. Joule,2019,3(9):2086. [22] LIU Y,LIU S,LI G,et al. High volumetric energy density sulfur cathode with heavy and catalytic metal oxide host for lithium-sulfur battery[J]. Advance Science,2020,7:1903693. [23] LI M,LIU T,SHI Z,et al. Dense all-electrochem-active electrodes for all-solid-state lithium batteries[J]. Advance Materials,2021,33(26):2008723. [24] ZHAO C,XU G,YU Z,et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites[J]. Nature Nanotechnology,2021,16:166-173. [25] LU Y,RONG X,HU Y,et al. Research and development of advanced battery materials in China[J]. Energy Storage Materials,2019,23:144-153 [26] CUI Yi. Silicon anodes[J]. Nature Energy,2021(6):995-996. [27] CHOI J,JEONG H,JANG J,et al. Weakly solvating solution enables chemical prelithiation of graphite-SiOx anodes for high-energy li-ion batteries[J]. Journal of the American Chemical Society,2021,143:9169-9176. [28] HERMAN L,SINKULA M. Development of high energy density lithium batteries[R]. California:California Energy Commission and Envia Systems,2019. [29] SUNG J,KIM N,Ma J,et al. Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack[J]. Nature Energy,2021,6:1164-1175. [30] LIN D,LIU Y,CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology,2017,12:194. [31] LIANG J,LUO J,SUN Q,et al. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries[J]. Energy Storage Materials,2019,21:308-334. [32] ZHANG X,LI T,LI B,et al. A sustainable solid electrolyte interphase for high-energy-density lithium metal batteries under practical conditions[J]. Angewandte Chemie International Edition,2020,59:3252-3257. [33] HWANG J,PARK S,YOON C,et al. Customizing a Li-metal battery that survives practical operating conditions for electric vehicle applications[J]. Energy Environmental Science,2019,12:2174-2184. [34] NIU C,LEE H,CHEN S,et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy,2019(4):551-559. [35] XUE W,HUANG M,LI Y,et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte[J]. Nature Energy,2021,6(5):1-11. [36] DENG W,DAI W,ZHOU X,et al. Competitive solvation-induced concurrent protection on the anode and cathode toward a 400 Wh kg-1 lithium metal battery[J]. ACS Energy Letters,2021,6(1):115-123. [37] XU Q,YANG X,RAO M,et al. High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework[J]. Energy Storage Materials,2020,26:73-82. [38] HAN F,WESTOVER A,YUE J,et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy,2019(4):187-196. [39] HUANG W,ZHAO N,BI Z,et al. Can we find solution to eliminate Li penetration through solid garnet electrolytes?[J]. Materials Today Nano,2020,10:100075. [40] LIANG R,LI Q,YU X,et al. Approaching Practically accessible solid-state batteries:stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews,2020,120,14:6820-6877. [41] FAN L,HE L,NAN C,et al. Tailoring inorganic-polymer composites for the mass production of solid-state batteries[J]. Nature Reviews Materials,2021:1-17. [42] CAO W,ZHANG J,LI H. Batteries with high theoretical energy densities[J]. Energy Storage Materials,2020,26:46-55. [43] LIU J,GAO X,HARTLEY G,et al. The interface between Li6.5La3Zr1.5Ta0.5O12 and liquid electrolyte[J]. Joule,2020(4):101-108. [44] 杨续来,张峥,曹勇,等. 高能量密度锂离子电池结构工程化技术探讨[J]. 储能科学与技术,2020,9(4):1127-1136. YANG Xulai,ZHANG Zheng,CAO Yong,et al. The structural engineering for achieving high energy density Li-ion batteries[J]. Energy Storage Science and Technology,2020,9(4):1127-1136. [45] CHEN Y,KANG Y,ZHAO Y,et al. A review of lithium-ion battery safety concerns:The issues,strategies,and testing standards[J]. Journal of Energy Chemistry,2021,59:83-99. [46] 李垚坤,余万铨,贺东方,等. 纯电动汽车电池箱体结构分析与轻量化设计[J]. 塑料工业,2020,48(8):91-95. LI Yaokun,YU Wanquan,HE Dongfang,et al. Structural analysis and lightweight design of battery box for pure electric vehicles[J]. China Plastics Industry,2020,48(8):91-95. [47] YANG X,LIU T,WANG C. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles[J]. Nature Energy,2021,6:176-185. [48] CALISKAN A,KADIU A. US Patent 20190351750A1 Body-on-frame electric vehicle with battery pack integral to frame[S]. Dearborn:MI,2019. [49] MOLGER M. Future trends on battery systems-ready for the next generation[R]. Wolfsburg:UBS Evidence Lab VW ID.3 Teardown,2021. [50] ASP L,JOHANSSON M,LINDBERGH G,et al. Structural battery composites:A review[J]. Composite Structures,2019(1):042001. [51] CARLSTEDT D,ASP L. Performance analysis framework for structural battery composites in electric vehicles[J]. Composites Part B:Engineering,2020,186(4):107822. [52] SCHNEIDER L,IHRNER N,ZENKERT D,et al. Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries[J]. ACS Applied Energy Materials,2019(2):4362-4369. [53] ASP L,BOUTON K,CARLSTEDT D,et al. A structural battery and its multifunctional performance[J]. Advanced Energy Sustainability Research,2021(2):2000093. [54] HOLLINGER A,MCANALLEN D,BROCKETT M,et al. Cylindrical lithium-ion structural batteries for drones[J]. International Journal Energy Research,2019,44(1):1-7. [55] HOPKINS B,LONG J,ROLISON D,et al. High-performance structural batteries[J]. Joule,2020,4:2237-2243. [56] 汪洪,向勇,项晓东,等. 材料基因组——材料研发新模式[J]. 科技导报,2015,33(10):13-19. WANG Hong,XIANG Yong,XIANG Xiaodong,et al. Materials genome enables research and development revolution[J]. Science & Technology Review,2015,33(10):13-19. [57] AGHABALI I,BAUMAN J,KOLLMEYER P,et al. 800-V Electric vehicle powertrains:review and analysis of benefits,challenges,and future trends[J]. IEEE Transactions on Transportation Electrification,2021,7(3):927-948. [58] SHI Y,ZHANG Q,HE A,et al. A real-world investigation into usage patterns of electric vehicles in Shanghai[J]. Journal of Energy Storage,2020,32:101805. [59] KEMPTON W. Electric vehicles:Driving range[J]. Nature Energy,2016,1:16131. [60] TSCHIESNER A,HEUSS R,HENSLEY R,et al. The road ahead for e-mobility[R]. Munich:McKinsey Company,2020. [61] 王其钰,王朔,周格,等. 锂电池失效分析与研究进展[J]. 物理学报,2018,67:128501. WANG Qiyu,WANG Shuo,ZHOU Ge,et al. Progress on the failure analysis of lithium battery[J]. Acta Physica Sinica,2018,67:128501. [62] 朱晓庆,王震坡,WANG H,等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报,2020,56(14):91-118. ZHU Xiaoqing,WANG Zhenpo,WANG H,et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering,2020,56(14):91-118. [63] NOH H,YOUN S,YOON C,et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3,0.5,0.6,0.7,0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources,2013,233:121-130. [64] QUINTIERE J G. Packaging technique to defeat fires and explosions due to lithium-ion and related high energy density batteries[R]. Washington:Qdot LLC,2020. [65] JUST P,ROST J,ECHELMEYER T,et al. A method to quantify coating thickness and porosity of electrodes for lithium-ion-batteries[J]. Measurement,2016,89:312-315. [66] GÜNTER F,BURGSTALLER C,KONWITSCHNY F,et al. Influence of the electrolyte quantity on lithium-ion cells[J]. Journal of the Electrochemistry Society,2019,166(10):A1709-A1714. [67] DUAN J,TANG X,DAI H,et al. Building safe lithium‑ion batteries for electric vehicles:A review[J]. Electrochemical Energy Review,2020(3):1-42. [68] QIU Y,JIANG F. A review on passive and active strategies of enhancing the safety of lithium-ion batteries[J]. International Journal of Heat and Mass Transfer,2022(184):122288. [69] 王芳,夏军. 电动汽车动力电池系统安全分析与设计[M]. 北京:科学出版社,2016. WANG Fang,XIA Jun. Safety and analysis and design of battery pack for electric vehicle[M]. Beijing:Science Press,2016. [70] 王芳,夏军. 电动汽车动力电池系统设计与制造技术[M]. 北京:科学出版社,2017. WANG Fang,XIA Jun. Design and manufacturing technology of battery pack for electric vehicle[M]. Beijing:Science Press,2017. [71] 李志杰,陈吉清,兰凤崇,等. 机械外力下动力电池系统的系统安全性分析与评价[J]. 机械工程学报,2019,55(12):137-148. LI Zhijie,CHEN Jiqing,LAN Fengchong,et al. Analysis and evaluation on system safety of power battery pack under mechanical loading[J]. Journal of Mechanical Engineering,2019,55(12):137-148. [72] KOVALENKO I,ZDYRKO B,MAGASINSKI A,et al. A major constituent of brown algae for use in high-capacity li-ion batteries[J]. Science,2011,334(6502):75-79. [73] EE Y,TEY K,LIM K,et al. Lithium-ion battery state of charge (SoC) estimation with non-electrical parameter using uniform fiber bragg grating (FBG)[J]. Journal of Energy Storage,2021,40:102704. [74] HAN G,YAN J,GUO Z,et al. A review on various optical fibre sensing methods for batteries[J]. Renewable and Sustainable Energy Reviews,2021,150:111514. [75] SCHMIDT O,THOMITZEK M,RÖDER F,et al. Modeling the impact of manufacturing uncertainties on lithium-ion batteries[J]. Journal of The Electrochemical Society,2020,167:060501. [76] GÜNTHER T,BILLOT N,SCHUSTER J,et al. The Manufacturing of Electrodes:Key process for the future success of lithium-ion batteries[J]. Advanced Materials Research,2018,1140:304-311. [77] QIAN G,MONACO F,MENG D,et al. The role of structural defects in commercial lithium-ion batteries[J]. Cell Reports Physical Science,2021,2(9):100554. [78] KUMBERG J,MÜLLER M,DIEHM R,et al. Drying of lithium-ion battery anodes for use in high-energy cells:influence of electrode thickness on drying time,adhesion,and crack formation[J]. Energy Technology,2019(7):1900126. [79] HOSSEINZADEH E,ARIAS S,KRISHN M,et al. Quantifying cell-to-cell variations of a parallel battery module for different pack configurations[J]. Applied Energy,2021(282):115859. [80] WANG X,FANG Q,DAI H,et al. Investigation on cell performance and inconsistency evolution of series and parallel lithium-ion battery modules[J]. Energy Technology,2021(9):2100072. [81] 陈泽宇,熊瑞,孙逢春. 电动汽车电池安全事故分析与研究现状[J]. 机械工程学报,2019,55(24):93-116. CHEN Zeyu,XIONG Rui,SUN Fengchun. Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering,2019,55(24):93-116. [82] SU T,LYU N,ZHAO Z,et al. Safety warning of lithium-ion battery energy storage station via venting acoustic signal detection for grid application[J]. Journal of Energy Storage,2021,38:102498. [83] 华旸,周思达,何瑢,等. 车用锂离子动力电池组均衡管理系统研究进展[J]. 机械工程学报,2019,55(20):73-84. HUA Yang,ZHOU Sida,HE Rong,et al. Review on lithium-ion battery equilibrium technology applied for EVs[J]. Journal of Mechanical Engineering,2019,55(20):73-84. [84] 王震坡,李晓宇,袁昌贵,等. 大数据下电动汽车动力电池故障诊断技术挑战与发展趋势[J]. 机械工程学报,2021,57(14):52-63. WANG Zhenpo,LI Xiaoyu,YUAN Changgui,et al. Challenge and prospects for fault diagnosis of power battery system for electrical vehicles based on big-data[J]. Journal of Mechanical Engineering,2021,57(14):52-63. [85] 刘昱君,段强领,黎可,等. 多种灭火剂扑救大容量锂离子电池火灾的实验研究[J]. 储能科学与技术,2018,7(6):1105-1112. LIU Yujun,DUAN Qiangling,LI Ke,et al. Experimental study on fire extinguishing of large-capacity lithium-ion batteries by various fire extinguishing agents[J]. Energy Storage Science and Technology,2018,7(6):1105-1112. [86] 佘承其,张照生,刘鹏,等. 大数据分析技术在新能源汽车行业的应用综述——基于新能源汽车运行大数据[J].机械工程学报,2019,55(20):3-16. SHE Chengqi,ZHANG Zhaosheng,LIU Peng,et al. Overview of the application of big data analysis technology in new energy vehicle industry:Based on operating big data of new energy vehicle[J]. Journal of Mechanical Engineering,2019,55(20):3-16. [87] 胡晓松,唐小林. 电动车辆锂离子动力电池建模方法综述[J]. 机械工程学报,2017,53(16):20-31. HU Xiaosong,TANG Xiaolin. Review of modeling techniques for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering,2017,53(16):20-31. [88] LIPU M,HANNAN M,HUSSAIN A,et al. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles:Challenges and recommendations[J]. Journal of Cleaner Production,2018,205:115-133. [89] SHI Y,ZHANG Q,HE A,et al. A real-world investigation into usage patterns of electric vehicles in Shanghai[J]. Journal of Energy Storage,2020,32:101805. [90] 刘鹏. 新能源汽车大数据与运行安全[R]. 北京:电动车辆国家工程实验室,2020. LIU Peng. Big data and operation safety of new energy vehicles[R]. Beijing:National Engineering Laboratory for Electric Vehicles,2020. [91] YANG S,HE R,ZHANG Z,et al. CHAIN:Cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management[J]. Matter,2020,3(1):27-41. |
[1] | 周甜, 蔡力勋, 韩光照. 用于延性材料力学性能测定的圆柱平面-小冲杆试验新方法与应用[J]. 机械工程学报, 2024, 60(4): 316-325. |
[2] | 熊瑞, 李正阳, 燕润博, 杨瑞鑫. 全气候自热锂离子电池及低温极速加热策略研究[J]. 机械工程学报, 2024, 60(18): 247-257. |
[3] | 蒋帅, 陈铖, 段砚州, 熊瑞. 温度和老化影响下的锂离子电池荷电状态和健康状态联合估计方法研究[J]. 机械工程学报, 2024, 60(18): 266-275. |
[4] | 刘征宇, 张政, 郭乐凯, 孟辉, 刘项. 基于经验模态分解的锂离子电池健康状态预测[J]. 机械工程学报, 2024, 60(14): 272-281. |
[5] | 彭纪昌, 刘凯龙, 孟锦豪, 刘海涛. 基于变参数结构的锂离子电池建模方法[J]. 机械工程学报, 2024, 60(14): 298-305. |
[6] | 武骥, 方雷超, 刘兴涛, 陈佳佳, 刘晓剑, 吕帮. 基于特征优化和随机森林算法的锂离子电池SOH估计[J]. 机械工程学报, 2024, 60(12): 335-343. |
[7] | 张泽权, 蔡力勋, 韩光照, 黄茂波. 基于弹塑性解析方程的薄片试样低周疲劳试验方法[J]. 机械工程学报, 2023, 59(6): 72-83. |
[8] | 雷俊杰, 刘美红, HU Xiangping, 王娟, 王学良. 基于分形理论的椭圆弧型指尖密封磨损特性分析[J]. 机械工程学报, 2023, 59(3): 144-157. |
[9] | 周航, 刘晓龙, 张梦迪, 孙金磊, 程泽. 基于简单循环单元的储能锂离子电池SOC和SOH联合估计方法*[J]. 电气工程学报, 2023, 18(3): 332-340. |
[10] | 庞晓青, 李佳承, 刘文学, 邓忠伟, 胡晓松. 模型与数据融合的大尺寸快充锂电池分布式温度估计[J]. 机械工程学报, 2023, 59(22): 20-32. |
[11] | 张广续, 魏学哲, 陈思琦, 朱建功, 戴海峰. 高温循环老化对锂离子电池安全性影响研究[J]. 机械工程学报, 2023, 59(22): 33-45. |
[12] | 何洪文, 王浩宇, 王勇, 李双歧. 基于实车运行数据的锂离子电池健康状态估计[J]. 机械工程学报, 2023, 59(22): 46-58. |
[13] | 李毅超, 王楠, 段彬, 康永哲, 张承慧. 基于深度学习和粒子群算法的锂离子电池核温估计方法[J]. 机械工程学报, 2023, 59(22): 69-78. |
[14] | 郭喆晨, 徐俊, 王行早, 徐梓铭, 梅雪松. 基于一维/三维热模型的平板热管/液冷电池热管理系统优化设计[J]. 机械工程学报, 2023, 59(22): 79-88. |
[15] | 张言茹, 张珺玮, 王占国, 李劼峰, 张维戈. 基于历史数据的车载锂离子电池异常诊断[J]. 机械工程学报, 2023, 59(22): 89-99. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||