[1] 陈泽宇,熊瑞,李世杰,等. 电动载运工具锂离子电池低温极速加热方法研究[J]. 机械工程学报, 2021, 57(4):113-120. CHEN Zeyu, XIONG Rui, LI Shijie, et al. Extremely fast heating method of the lithium-ion battery at cold climate for electric vehicle[J]. Journal of Mechanical Engineering, 2021, 57(4):113-120. [2] XU Jun, MEI Xuesong, WANG Xiao, et al. A relative state of health estimation method based on wavelet analysis for lithium-ion battery cells[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8):6973-6981. [3] 熊瑞,李幸港. 基于双卡尔曼滤波算法的动力电池内部温度估计[J]. 机械工程学报, 2020, 56(14):146-151. XIONG Rui, LI Xinggang. Battery internal temperature estimation method through double extended kalman filtering algorithm[J]. Journal of Mechanical Engineering, 2020, 56(14):146-151. [4] GUO Zhechen, XU Jun, XU Ziming, et al. A lightweight multichannel direct contact liquid-cooling system and its optimization for lithium-ion batteries[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2):2334-2345. [5] YE Xin, ZHAO Yaohua, QUAN Zhenhua. Thermal management system of lithium-ion battery module based on micro heat pipe array[J]. International Journal of Energy Research, 2018, 42(2):648-655. [6] WILKE S, SCHWEITZER B, KHATEEB S, et al. Preventing thermal runaway propagation in lithium-ion battery packs using a phase change composite material:An experimental study[J]. Journal of Power Sources, 2017, 340:51-59. [7] WEI Aibo, QU Jian, QIU Huihe, et al. Heat transfer characteristics of plug-in oscillating heat pipe with binary-fluid mixtures for electric vehicle battery thermal management[J]. International Journal of Heat and Mass Transfer, 2019, 135:746-760. [8] ZHAO Jiateng, LÜ Peizhao, RAO Zhonghao. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack[J]. Experimental Thermal and Fluid Science, 2017, 82:182-188. [9] ZHOU Haobing, ZHOU Fei, XU Lipeng, et al. Thermal performance of cylindrical lithium-ion battery thermal management system based on air distribution pipe[J]. International Journal of Heat and Mass Transfer, 2019, 131:984-998. [10] LIANG Jialing, GAN Yunhua, LI Yong, et al. Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures[J]. Energy, 2019, 189:116233. [11] ZHANG Zhuqian, WEI Ke. Experimental and numerical study of a passive thermal management system using flat heat pipes for lithium-ion batteries[J]. Applied Thermal Engineering, 2020, 166:114660. [12] GRECO A, CAO Dongpu, XI Jiang, et al. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes[J]. Journal of Power Sources, 2014, 257:344-355. [13] YANG Kaishing, LIN Chenchuan, SHYU Jincherng, et al. Performance and two-phase flow pattern for micro fflat heat pipes[J]. International Journal of Heat & Mass Transfer, 2014, 77:1115-1123. [14] DAN Dan, YAO Chenning, ZHANG Yangjun, et al. Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model[J]. Applied Thermal Engineering, 2019, 162:114183. [15] LIU Feifei, LAN Fengchong, CHEN Jiqing. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling[J]. Journal of Power Sources, 2016, 321:57-70. [16] WORWOOD D, KELLNER Q, WOJTALA M, et al. A new approach to the internal thermal management of cylindrical battery cells for automotive applications[J]. Journal of Power Sources, 2017, 346:151-166. [17] UKAUSKAS A. Heat transfer from tubes in crossflow[J]. Advances in Heat Transfer, 1972, 8:93-160. |