[1] 蔡路,张继业,李田. 高速列车转向架区域雪粒运动特性分析[J]. 中国科学:技术科学,2019,49(12):1593-1602. CAI Lu,ZHANG Jiye,LI Tian. Analysis of the motion characteristics of snow particles in the bogie region of a high-speed train[J]. Scientia Sinica(Technologica),2019,49(12):1593-1602. [2] 冯永华,黄照伟,张琰,等. 高寒动车组转向架区域积雪结冰数值仿真研究[J]. 铁道科学与工程学报,2017,14(3):437-444. FENG Yonghua,HUANG Zhaowei,ZHANG Yan,et al. Research of numerical simulation of the snow icy phenomenon of the high-speed train bogie area[J]. Journal of Railway Science and Engineering,2017,14(3):437-444. [3] 黄照伟,冯永华,高广军,等. 高速列车制动夹钳积雪结冰数值仿真研究[J]. 铁道科学与工程学报,2017,14(12):2516-2524. HUANG Zhaowei,FENG Yonghua,GAO Guangjun,et al. Numerical research of the snow and ice accumulation on the brake calipers of the high-speed trains[J]. Journal of Railway Science and Engineering,2017,14(12):2516-2524. [4] 牛悦丞,李芾,李新荣,等. 列车制动盘热分析现状与展望[J]. 机车电传动,2019(6):5-9,14. NIU Yuecheng,LI Fu,LI Xinrong,et al. Status and prospect of thermal analysis of train brake discs[J]. Electric Drive for Locomotives,2019(6):5-9,14. [5] LI T,DAI Z,YU M,et al. Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths[J]. Engineering Applications of Computational Fluid Mechanics,2021,15(1):549-560. [6] WANG J,ZHANG J,ZHANG Y,et al. Impact of rotation of wheels and bogie cavity shapes on snow accumulating on the bogies of high-speed trains[J]. Cold Regions Science and Technology,2019,159:58-70. [7] 张乐,李田,蔡路,等. 雪粒参数对高速列车转向架区域雪粒堆积的影响[J]. 机械工程学报,2020,56(10):216-224. ZHANG Le,LI Tian,CAI Lu,et al. Effect of snow parameters on snow accumulation in high-speed train bogies[J]. Journal of Mechanical Engineering,2020,56(10):216-224. [8] 蔡路,张继业,李田,等. 高速列车底部空气流动特性对转向架区域积雪的影响[J]. 交通运输工程学报,2019,19(3):109-121. CAI Lu,ZHANG Jiye,LI Tian,et al. Impact of air flow characteristics underneath carbody on snow accumulation in bogie region of high-speed train[J]. Journal of Traffic and Transportation Engineering,2019,10(3):109-121. [9] 蔡路,李田,张继业. 高速列车转向架雪粒沉积特性数值研究[J]. 浙江大学学报(工学版),2020,54(4):804-815. CAI Lu,LI Tian,ZHANG Jiye. Numerical study on deposition characteristics of snow particle on bogie of high-speed train[J]. Journal of Zhejiang University (Engineering Science),2020,54(4):804-815. [10] CAI L,LOU Z,LIU N,et al. Numerical investigation of the deposition characteristics of snow on the bogie of a high-speed train[J]. Fluid Dynamics & Materials Processing,2020,16(1):41-53. [11] YVES B,WAGDI G H,JULIEN D,et al. A finite element method study of Eulerian droplets improvement models[J]. International Journal for Numerical Methods in Fluids,1999,29(4):429-449. [12] RAIMUND H. Development of a three-dimensional Eulerian model of droplet-wall interaction mechanisms[D]. Montreal:McGill University,2005. [13] DAVID R B,WAGDI G,MARCO F. Eulerian modelling of supercooled large droplet splashing and bouncing[J]. Journal of Aircraft,2015,52(5):1611-1624. [14] 邵晓海,刘星. 数值模拟过冷水滴撞击翼型表面的收集特性[J]. 应用力学学报,2015,32(2):266-270. SHAO Xiaohai,LIU Xing. Numerical method to simulate collection efficiency of supercooled droplets impinging on an airfoil[J]. Chinese Journal of Applied Mechanics,2015,32(2):266-270. [15] ASHLIE B F. Ice crystal icing research at NASA[C]//9th AIAA Atmospheric and space environments conference. Denver:SAE International,2017,1-18. [16] PITTER R L,PRUPPACHER H R,HAMIELEC A E. A numerical study of viscous flow past a thin oblate spheroid at low and intermediate reynolds numbers[J]. Journal of the Atmospheric Sciences,1973,30(1):125-134. [17] BOURGAULT Y,BEAUGENDRE H,HABASHI W G. Development of a shallow-water icing model in FENSAP-ICE[J]. Journal of Aircraft,2000,37(4):640-646. [18] BARTKUS T,TSAO J,STRUK P. Analysis of experimental ice accretion data and assessment of a thermodynamic model during ice crystal icing[C]//International Conference on Icing of Aircraft,Engines,and Structures. Minneapolis:SAE International,2019:1-18. [19] PETER M S,THOMAS P,RATVASKY T B,et al. An initial study of the fundamentals of ice crystal icing physics in the NASA propulsion systems laboratory[C]//9th AIAA Atmospheric and Space Environments Conference. Denver:SAE International,2017:1-15. [20] STRUK P M,AGUI J,RATVASKY T,et al. Ice-crystal icing accretion studies at the NASA propulsion systems laboratory[C]//International Conference on Icing of Aircraft,Engines,and Structures. Minneapolis:SAE International,2019,1-16. [21] HÉLOÏSE B,FRANÇOIS M,WAGDI G,et al. FENSAP-ICE's three-dimensional in-flight ice accretion module:ICE3D[J]. Journal of Aircraft,2003,40(2):239-247. [22] MORENCY F,BEAUGENDRE H,BARUZZI G,et al. FENSAP-ICE A comprehensive 3D simulation system for in-flight icing[C]//15th AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics,2001:1-13. [23] 韦皓,李东凯. 高寒地区动车组融冰除雪技术研究[J]. 高速铁路技术,2017,8(1):25-33. WEI Hao,LI Dongkai. Study on removing technology of ice and snow on EMU in cold regions[J]. High Speed Railway Technology,2017,8(1):25-33. [24] 娄振,蔡路,李田,等. 高速列车制动盘甩水的数值仿真研究[J]. 铁道科学与工程学报,2020,17(6):1356-1365. LOU Zhen,CAI Lu,LI Tian,et al. Numerical simulation research on water spray from brake discs of high-speed train[J]. Journal of Railway Science and Engineering,2020,17(6):1356-1365. [25] LIU M,WANG J,ZHU H,et al. A numerical study on water spray from wheel of high-speed train[J]. Journal of Wind Engineering & Industrial Aerodynamics,2020,197:1-17. [26] BOURGAULT Y,BEAUGENDRE H,HABASHI W G. Development of a shallow-water icing model in FENSAP-ICE[J]. Journal of Aircraft,2000,37(4):640-646. |