[1] 北极星风力发电网. 2020年风电行业深度报告[EB/OL]. (2021-03-22)[2021-11-08]. https://news.bjx.com.cn/html/20210322/1143271.shtml. Polaris wind power grid. 2020 Wind Power Industry depth report[EB/OL]. (2021-03-22)[2021-11-08]. https://news.bjx.com.cn/html/20210322/1143271.shtml. [2] 中国电力企业联合会. 2016年1-11月全国电力工业统计数据一览表[EB/OL]. (2016-12-15)[2021-11-08]. http://www.cec.org.cn/guihuayutongji/tongjxinxi/. China Federation of Electric Power Enterprises. List of national power industry statistics from January to November 2016[EB/OL]. (2016-12-15)[2021-11-08]. http://www.cec.org.cn/guihuayutongji/tongjxinxi/. [3] 国家能源局. 能源技术创新"十三五"规划[R]. 北京:国家能源局,2016. National Energy Administration. The 13th five-year plan of energy technology innovation[R]. Beijing:National Energy Administration 2016. [4] 孙自珂. 风电并网对电力系统可靠性影响研究[D]. 济南:山东大学,2015. SUN Zike. Study on the influence of wind power grid connection on power system reliability[D]. Jinan:Shandong University,2015. [5] 李舜酩,侯钰哲,李香莲. 滚动轴承振动故障时频域分析方法综述[J]. 重庆理工大学学报(自然科学),2021,35(10):85-93. LI Shunming,HOU Yuzhe,LI Xianglian. Summary of time-frequency domain analysis methods for vibration faults of rolling bearings[J]. Journal of Chongqing University of Technology(Natural Science),2021,35(10):86-93. [6] 石文杰,黄鑫,温广瑞,等. 基于DS-VMD及相关峭度的滚动轴承故障诊断[J]. 振动、测试与诊断,2021,41(1):133-141. SHI Wenjie,HUANG Xin,WEN Guangrui,et al. Fault diagnosis of rolling bearing based on DS-VMD and related kurtosis[J]. Vibration,Testing and Diagnosis,2021,41(1):133-141. [7] 陈森,张浩,甄冬,等. 基于SSD和ICA降噪的滚动轴承故障诊断[J]. 组合机床与自动化加工技术,2021(8):94-98. CHEN Sen,ZHANG Hao,ZHEN Dong,et al. Fault diagnosis of rolling bearing based on SSD and ICA noise reduction[J]. Modular Machine Tool and Automatic Machining Technology,2021(8):94-98. [8] 王新,闫文源. 基于变分模态分解和SVM的滚动轴承故障诊断[J]. 振动与冲击,2017,36(18):252-256. WANG Xin,YAN Wenyuan. Fault diagnosis of rolling bearing based on variational mode decomposition and SVM[J]. Vibration and Shock,2017,36(18):252-256. [9] 范春旸,吴守鹏,刘晓文,等. 基于小波包变换与随机森林的滚动轴承故障特征分析方法[J]. 机械设计与制造,2020(10):59-63. FAN Chunyang,WU Shoupeng,LIU Xiaowen,et al. Fault feature analysis method of rolling bearing based on wavelet packet transform and random forest[J]. Mechanical Design and Manufacturing,2020(10):59-63. [10] 孙鹏. 基于神经网络的滚动轴承故障诊断研究[C]//2012年全国振动工程及应用学术会议论文集,2012:44-47. SUN Peng. Research on fault diagnosis of rolling bearing based on neural network[C]//Proceedings of the 2012 National Conference on Vibration Engineering and Applications,2012:44-47. [11] 陈保家,陈学力,沈保明,等. CNN-LSTM深度神经网络在滚动轴承故障诊断中的应用[J]. 西安交通大学学报,2021,55(6):28-36. CHEN Baojia,CHEN Xueli,SHEN Baoming,et al. Application of CNN-LSTM deep neural network in rolling bearing fault diagnosis[J]. Journal of Xi'an Jiaotong University,2021,55(6):28-36. [12] 徐卓飞,武丽花,黄卿,等. 基于深度残差网络的滚动轴承故障诊断方法[J]. 机械设计与研究,2021,37(3):78-83. XU Zhuofei,WU Lihua,HUANG Qing,et al. Fault diagnosis method of rolling bearing based on deep residual network[J]. Mechanical Design and Research,2021,37(3):78-83. [13] ZHAO M,ZHONG S,FU X,et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics,2019,16(7):4681-4690. [14] HUBEL D H,WIESEL T N. Receptive fields,binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of physiology,1962,160(1):106-154. [15] FUKUSHIMA K. Neocognitron-A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics,1980,36(4):193-202. [16] LECUN Y,BOTTOU L,BENGIO Y,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324. [17] ZEILER M D,FERGUS R. Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision. Springer,Cham,2014:818-833. [18] SZEGEDY C,LIU W,JIA Y,et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9. [19] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778. [20] ZHAO M,KANG M,TANG B,et al. Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes[J]. IEEE Transactions on Industrial Electronics,2017,65(5):4290-4300. [21] IOFFE S,SZEGEDY C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning,PMLR,2015:448-456. [22] HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141. [23] ISOGAWA K,IDA T,SHIODERA T,et al. Deep shrinkage convolutional neural network for adaptive noise reduction[J]. IEEE Signal Processing Letters,2017,25(2):224-228. [24] HUANG G,LIU Z,VAN DER MAATEN L,et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708. |