• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (12): 202-214.doi: 10.3901/JME.2023.12.202

• 特邀专栏:制造大数据分析与决策 • 上一篇    下一篇

扫码分享

基于改进深度残差收缩网络的风电机组滚动轴承故障诊断方法

卞文彬1,2, 邓艾东1,2, 刘东川1,2, 赵敏1,2, 刘洋1,2, 李晶3   

  1. 1. 东南大学大型发电装备安全运行与智能测控国家工程研究中心 南京 210096;
    2. 东南大学能源与环境学院 南京 210096;
    3. 南京审计大学信息工程学院 南京 211815
  • 收稿日期:2022-07-21 修回日期:2023-02-11 出版日期:2023-06-20 发布日期:2023-08-15
  • 通讯作者: 邓艾东(通信作者),男,1968年出生,博士,教授,博士研究生导师。主要研究方向为旋转机械故障诊断,测控技术,智能仪器,风力发电和信号处理。E-mail:dnh@seu.edu.cn
  • 作者简介:卞文彬,男,1997年出生。主要研究方向为旋转机械智能诊断。E-mail:1003620018@qq.com;刘东川,男,1997年出生。主要研究方向为旋转机械故障诊断。E-mail:1210864166@qq.com;赵敏,女,1997年出生。主要研究方向为旋转机械故障诊断。E-mail:220200453@seu.edu.cn;刘洋,男,1994年出生,博士研究生。主要研究方向旋转机械智能诊断。E-mail:634002312@qq.com;李晶,女,1982年出生,博士,讲师。主要研究方向为风电传动系统故障诊断及预测,声发射信号处理。E-mail:lijing@nau.edu.cn
  • 基金资助:
    国家自然科学基金(51875100,52005267)、江苏省重点研发计划(BE2020034)和江苏省博士后科研资助计划(2020Z285)资助项目。

Fault Diagnosis Method of Wind Turbine Rolling Bearing Based on Improved Deep Residual Shrinkage Network

BIAN Wenbin1,2, DENG Aidong1,2, LIU Dongchuan1,2, ZHAO Min1,2, LIU Yang1,2, LI Jing3   

  1. 1. National Engineering Research Center of Power Generation Control and Safety, Southeast University, Nanjing 210096;
    2. School of Energy and Environment, Southeast University, Nanjing 210096;
    3. School of Information Enginerring, Nanjing Audit University, Nanjing 211815
  • Received:2022-07-21 Revised:2023-02-11 Online:2023-06-20 Published:2023-08-15

摘要: 滚动轴承是风电机组关键部件,其运行工况复杂,故障类型难以准确识别。针对传统深度神经网络在强噪声环境下特征学习能力不足的问题,提出一种基于稠密连接模块的改进深度残差收缩网络(Deep residual shrinkage network based on dense block,DB-DRSN),实现强噪声、不同负载工况下滚动轴承故障的高效诊断。首先,将添加不同等级噪声的振动信号间隔采样并矩阵化,构建二维灰度图作为输入样本。然后,基于Dense block构造稠密连接残差收缩模块层(Residual shrinkage block unit based on dense block,DB-RSBU),利用Bottleneck层替代残差收缩模块中的卷积隐层,并加入Concat连接,达到对浅层和深层特征的充分利用。在每次稠密连接后通过1×1卷积进行降维,利用注意力模块和软阈值对逐通道特征赋不同阈值并降噪。最后,输入样本经过卷积池化层和DB-RSBU层堆叠的网络得到分类结果。试验表明,DB-DRSN模型在CWRU与PU滚动轴承数据集上不同噪声等级下的平均诊断准确率分别达到99.80%和96.44%,相比其他模型有更高的准确率、更快的收敛速度和更强的抗干扰能力。引入稠密连接核心思想对网络结构的改进可为基于数据驱动的风电机组滚动轴承故障诊断方法提供新思路。

关键词: 滚动轴承, 故障诊断, 改进深度残差收缩网络, dense block, 注意力机制

Abstract: Rolling bearing is a critical component of wind turbine. Because of its complex operating conditions, it is difficult to accurately identify the type of fault. In order to solve the problem of insufficient feature learning ability of traditional deep neural network in strong noise environment, an improved deep residual shrinkage network based on dense block (DB-DRSN) is proposed to realize efficient fault diagnosis of rolling bearing under strong noise and different load conditions. First of all, the vibration signals with different levels of noise are sampled at intervals and matrixed, and a two-dimensional grayscale image is constructed as the input sample. Then, the dense connection residual shrinkage block unit based on Dense block (DB-RSBU) is constructed. The Bottleneck layer is used to replace the convolution hidden layer in the residual shrinkage block unit, and the concat connection is added to make full use of the shallow and deep features. After each dense connection, the dimension of feature maps is reduced by 1×1 convolution, and the attention module and soft threshold function are used to assign different thresholds to the channel-by-channel features and reduce noise. Finally, the input samples go through the network stacked by convolution layer, pooling layer and DB-RSBU layer to get the classification results. The experimental results show that the average diagnostic accuracy of DB-DRSN model under different noise levels on CWRU and PU rolling bearing data sets are 99.80% and 96.44% respectively, which has higher accuracy, faster convergence speed and stronger anti-interference ability than other models. The improvement of network structure by introducing the core idea of dense connection can provide a new method for data-driven fault diagnosis of wind turbine rolling bearings.

Key words: rolling bearing, fault diagnosis, improved deep residual shrinkage network, dense block, attention mechanism

中图分类号: