[1] 孙晨,文龙,李新宇,等. 基于自动机器学习的不平衡故障诊断方法[J]. 计算机集成制造系统,2021,27(10):2837-2847. SUN Chen,WEN Long,LI Xinyu,et al. New automatic machine learning based imbalanced learning method for fault diagnosis[J]. Computer Integrated Manufacturing System,2021,27(10):2837-2847. [2] ZHAO Zhibin,WU Jingyao,LI Tianfu,et al. Challenges and opportunities of ai-enabled monitoring,diagnosis & prognosis:A review[J]. Chinese Journal of Mechanical Engineering,2021,34:56. [3] 雷亚国,贾锋,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018,54(5):94-104. LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering,2018,54(5):94-104. [4] MA Qianli,LI Sen,SHEN Lifeng,et al. End-to-end incomplete time-series modeling from linear memory of latent variables[J]. IEEE Transactions on Cybernetics,2020,50(12):4908-4920. [5] WANG Cunsong,LU Ningyun,CHENG Yuehua,et al. A data-driven aero-engine degradation prognostic strategy[J]. IEEE Transactions on Cybernetics,2021,51(3):1531-1541. [6] WU Jiyan,WU Min,CHEN Zhenghua,et al. Degradation-aware remaining useful life prediction with LSTM autoencoder[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:1-10. [7] WANG Biao,LEI Yaguo,YAN Tao,et al. Recurrent convolutional neural network:A new framework for remaining useful life prediction of machinery[J]. Neurocomputing,2020,379:117-129. [8] 刘颉,杨超颖,周凯波. 基于图数据深度挖掘的旋转机械故障诊[J]. 华中科技大学学报,2021,49(9):1-5. LIU Jie,YANG Chaoying,ZHOU Kaibo. Fault diagnosis of rotating machinery based on graph data deep mining[J]. Journal of Huazhong University of Science and Technology,2021,49(9):1-5. [9] LI Tianfu,ZHAO Zhibin,SUN Chuang,et al. Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction[J]. Reliability Engineering & System Safety,2021,215:107878. [10] ZHANG Yuxuan,LI Yuanxiang,WEI Xian,et al. Adaptive spatio-temporal graph convolutional neural network for remaining useful life estimation[C]//2020 International Joint Conference on Neural Networks. 2020:1-7. [11] 雷亚国. 混合智能技术及其在故障诊断中的应用研究[D]. 西安:西安交通大学,2007. LEI Yaguo. Research on hybrid intelligence technology and its application in fault diagnosis[D]. Xi'an:Xi'an Jiaotong University,2007. [12] 高艺源,于德介,王好将,等. 基于图谱指标的滚动轴承故障特征提取方法[J]. 航空动力学报,2018,33(8):2033-2040. GAO Yiyuan,YU Dejie,WANG Haojiang,et al. Fault feature extraction method of rolling bearing based on spectral graph indices[J]. Aerodynamics,2018,33(8):2033-2040. [13] VELIKOVI P,CUCURULL G,CASANOVA A,et al. Graph attention networks[C]//International Conference on Learning Representations 2018. [14] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9:1735-1780. [15] 雷亚国,韩天宇,王彪,等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报,2019,55(16):1-6. LEI Yaguo,HAN Tianyu,WANG Biao,et al. XJTU-SY rolling bearing accelerated life test data set interpretation[J]. Journal of Mechanical Engineering,2019,55(16):1-6. [16] WANG Weijie,LU Yanmin. Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model[C]//2017 the 5th International Conference on Mechanical Engineering Journal of Manufacturing Systems,2017:012049. [17] ZHANG Jianjing,WANG Peng,YAN Ruqiang,et al. Long short-term memory for machine remaining life prediction[J]. Journal of Manufacturing Systems,2018,48:78-86. [18] LIU Yiben,GE Mingfeng. ZHANG Changhe,et al. A deep feature learning method based on time-frequency images and MsCNN_SE for rul prediction[C]//2021 IEEE International Conference on Sensing,Diagnostics,2021:163-167. [19] ZHOU Jianzhong,SHAN Yahui,LIU Jie,et al. Degradation tendency prediction for pumped storage unit based on integrated degradation index construction and hybrid CNN-LSTM model[J]. Sensors,2020,20(15):4277. [20] 王振力,滕藤,王群,等. 遥感影像K-最近邻图目标分类改进算法的研究[J]. 地理空间信息,2021,19(2):33-36. WANG Zhenli,TENG Teng,WANG Qun,et al. Imporved KNN classification algorithm based on K-nearest neighbor graph for remote sensing images[J]. Geospatial Information,2021,19(2):33-36. [21] LI Tianfu,ZHOU Zheng,LI Sinan,et al. The emerging graph neural networks for intelligent fault diagnostics and prognostics:A guideline and a benchmark study[J]. Mechanical Systems and Signal Processing,2022,168:108653. |