• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (12): 195-201.doi: 10.3901/JME.2023.12.195

• 特邀专栏:制造大数据分析与决策 • 上一篇    下一篇

扫码分享

基于路图注意力网络的轴承剩余寿命预测方法

杨超颖1, 刘颉2, 周凯波1   

  1. 1. 华中科技大学人工智能与自动化学院 武汉 430074;
    2. 华中科技大学土木与水利工程学院 武汉 430074
  • 收稿日期:2022-10-25 修回日期:2023-04-12 出版日期:2023-06-20 发布日期:2023-08-15
  • 通讯作者: 刘颉(通信作者),男,1988年出生,博士,副教授,硕士研究生导师。主要研究方向为复杂机电系统预测与健康管理。E-mail:jie_liu@hust.edu.cn
  • 作者简介:杨超颖,男,1999年出生,博士研究生。主要研究方向为机械状态监测与故障诊断。E-mail:yangcy@hust.edu.cn
  • 基金资助:
    国家重点研发计划(2020YFB1711203)和国家自然科学基金(52205104)资助项目。

Path Graph Attention Network-based Bearing Remaining Useful Life Prediction Method

YANG Chaoying1, LIU Jie2, ZHOU Kaibo1   

  1. 1. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074;
    2. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074
  • Received:2022-10-25 Revised:2023-04-12 Online:2023-06-20 Published:2023-08-15

摘要: 图数据构建质量直接关系图数据驱动的轴承剩余寿命预测性能。目前传统方法通常利用不同时刻的多传感数据来构建时空图,来表征监测对象性能状态,但如何在单传感监测应用场景下构建表征轴承性能退化状态的图数据并保证其质量仍是一个开放问题。面向单传感监测应用场景,提出一种基于路图注意力网络的轴承剩余寿命预测方法。首先,计算轴承全生命周期时序振动信号的时域统计特征并构造路图,其中,路图中的边用于连接相邻时刻振动信号;在此基础上,设计一种图注意力长短时记忆网络,用于挖掘路图的图特征(节点、边连接)中隐含的时序振动信号特征和时间依赖关系,从而深层次地反映轴承全寿命退化过程。在轴承全寿命公开数据集上开展验证对比试验,结果表明,该路图构造方式明确了边连接的物理意义,并提高了图数据表征性能;所提出的预测方法能有效捕获表征轴承退化状态的图特征以及时间依赖关系,为解决单传感监测应用场景下的轴承性能退化预测问题提供借鉴。

关键词: 滚动轴承, 剩余寿命预测, 路图, 图注意力网络, 单传感监测应用

Abstract: Quality of constructed graph data affects directly performance of the graph data-driven bearing remaining useful life(RUL) prediction. At present, traditional RUL prediction methods usually use spatio-temporal graphs to represent multi-sensor network data at different times. However, how to construct graph data representing the degradation state of bearing performance in a single-sensor monitoring application scenario and ensure its quality is still an open problem. Therefore, a path graph attention network-based bearing RUL prediction method for single-sensor monitoring application scenarios is proposed. First, a path graph is constructed by using the time-domain statistical features of the vibration signals in the whole life cycle of the bearing, in which the edges in the path graph are used to connect the vibration signals at adjacent moments. On this basis, a graph attention long short-term memory network is designed to extract the time-series vibration signal features and time dependencies hidden in the graph features(nodes, edge connections) of the path graph, so as to deeply reflect the whole bearing life degradation process. Verification and comparison experiments are carried out on the public bearing lifetime dataset. Results show that the proposed path graph construction clarifies the physical meaning of edge connections and improves graph data representation performance. Meanwhile, the proposed prediction method effectively captures the graph features and time dependence, characterizing the bearing degradation state and providing a reference for solving the problem of bearing performance degradation prediction in single-sensor monitoring application scenarios.

Key words: rolling bearing, remaining useful life, path graph, graph attention network, single-sensor monitoring application

中图分类号: