[1] YUAN Haibo, HUA Jinjie, DENG Yuliang, et al. Mechanized technology in tea-plucking[J]. China Tea, 2018, 40(6): 4-9. 袁海波, 滑金杰, 邓余良, 等. 名优绿茶机械化采摘技术[J]. 中国茶叶, 2018, 40(6): 4-9. [2] LI Nan. Researches on the control system for a parallel tea-plucking robot[D]. Nanjing: Nanjing Forestry University, 2015. 李楠. 名优绿茶并联采摘机器人控制系统研究[D]. 南京: 南京林业大学, 2015. [3] TANG Xiaolin. Analysis of the pros and cons of mechanised tea harvesting and its development prospects[J]. Tea Processing in China, 2008(4): 10-12. 唐小林. 机械化采茶的利弊分析及发展前景[J]. 中国茶叶加工, 2008(4): 10-12. [4] HAN Yu, XIAO Hongru, QIN Guangming, et al. Research on the development of tea picking machinery at home and abroad[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(2): 20-24. 韩余, 肖宏儒, 秦广明, 等. 国内外采茶机械发展状况研究[J]. 中国农机化学报, 2014, 35(2): 20-24. [5] GAO Feng. Structural design and simulation of a high-quality tea parallel plucking robot[D]. Nanjing: Nanjing Forestry University, 2013. 高凤. 名优茶并联采摘机器人结构设计与仿真[D]. 南京: 南京林业大学, 2013. [6] YANG Hualin, CHEN Long, CHEN Miaoting, et al. Tender tea shoots recognition and positioning for picking robot using improved YOLO-V3 model[J]. IEEE Access, 2019, 7: 180998-181011. [7] YANG Hualin, CHEN Long, MA Zhibin, et al. Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator[J]. Computers and Electronics in Agriculture, 2021, 181(7): 105946. [8] MEI Jiangping, ZHANG Xu, ZANG Jiawei, et al. Optimization design using a global and comprehensive performance index and angular constraints in a type of parallel manipulator[J]. Advances in Mechanical Engineering, 2018, 10(7): 1-13. [9] CHEN Qizhi, ZHANG Chengrui, NI Hepeng, et al. Trajectory planning method of robot sorting system based on S-shaped acceleration/deceleration algorithm[J]. International Journal of Advanced Robotic Systems, 2018, 15(6): 1-13. [10] JIN Xiaojun, CHEN Yong, ZHANG Hao, et al. High-quality tea flushes detection under natural conditions using computer vision[J]. International Journal of Digital Content Technology and Its Applications, 2012, 6(18): 600-606. [11] ZELINSKY A. Trajectory planning for automatic machines and robots (BIAGIOTTI, L. et al; 2008) [On the shelf][J]. Robotics & Automation Magazine IEEE, 2009, 16(4): 101-101. [12] YANG Xuewei, FENG Zuren, LIU Chengyu, et al. A geometric method for kinematics of delta robot and its path tracking control[C]// International Conference on Control, 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014). Gyeonggi-do, Korea (South): IEEE. 2014: 509-514. [13] LI Yuhang, HUANG Tian, DERRK G C, et al. An approach for smooth trajectory planning of high-speed pick-and-place parallel robots using quintic B-splines[J]. Mechanism and Machine Theory, 2018, 126: 479-490. [14] FANG Yi, HU Jie, LIU Wenhai, et al. Smooth and time-optimal S-curve trajectory planning for automated robots and machines[J]. Mechanism and Machine Theory, 2019, 137: 127-153. [15] LIN Jianjie, SOMANI N, BIAO H, et al. An efficient and time-optimal trajectory generation approach for waypoints under kinematic constraints and error bounds[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018: 5869-5876. [16] PIAZZI A, VISIOLI A. Global minimum-jerk trajectory planning of robot manipulators[J]. IEEE Transactions on Industrial Electronics, 2000, 47(1): 140-149. [17] MACFARLANE S, CROFT E A. Jerk-bounded manipulator trajectory planning: Design for real-time applications[J]. IEEE Transactions on Robotics & Automation, 2003, 19(1): 42-52. [18] LU Song, DING Bingxiao, LI Yangmin, et al. Minimum-jerk trajectory planning pertaining to a translational 3-degree-of-freedom parallel manipulator through piecewise quintic polynomials interpolation[J]. Advances in Mechanical Engineering, 2020, 12(3): 168781402091366. [19] XIA Bin. Research on trajecctory planning of the delta robot[D]. Harbin: Harbin Institute of Technology, 2015. 夏斌. Delta并联机器人的运动规划研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [20] XIE Zexiao, SHANG Dawei, REN Ping. Optimization and experimental verification of pick-and-place trajectory for a delta parallel robot based on lamé curves[J]. Journal of Mechanical Engineering, 2015, 51(1): 52-59. 解则晓, 商大伟, 任凭. 基于Lamé曲线的Delta并联机器人拾放操作轨迹的优化与试验验证[J]. 机械工程学报, 2015, 51(1): 52-59. [21] JOSÉ R. GARCÍA-MARTÍNEZ, EDSON E, et al. A PID-type fuzzy logic controller-based approach for motion control applications[J]. Sensors, 2020, 20(5323): 1-19. [22] WANG Mingli, XIAO Juliang, ZENG Fan, et al. Research on optimized time-synchronous online trajectory generation method for a robot arm[J]. Robotics and Autonomous Systems, 2020, 126: 103453. [23] TEEMU K, HEIKKI K, OLOF C, et al. Experimental study on fast and energy-efficient direct driven hydraulic actuator unit[J]. Energies, 2019, 12(8): 1538-1555. [24] LEE A Y, CHOI Y. Smooth trajectory planning methods using physical limits[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(12): 2127-2143. [25] FANG Yi, QI Jin, HU Jie, et al. An approach for jerk-continuous trajectory generation of robotic manipulators with kinematical constraints[J]. Mechanism and Machine Theory, 2020, 153(11): 153-174. [26] LI H Z, GONG Z M, LIN W, et al. Motion profile planning for reduced jerk and vibration residuals[J]. SIMTech Tech, 2007, 8: 32-37. [27] NGUYEN K D, NG T C, CEHN I M. On algorithms for planning s-curve motion profiles[J]. International Journal of Advanced Robotic Systems, 2008, 5(1): 11-19. [28] BAI Youdun, CHEN Xin, SUN Han, et al. Time-optimal freeform s-curve profile under positioning error and robustness constraints[J]. IEEE/ASME Transactions on Mechatronics, Journal of Robotics & Machine Learning, 2018, 23(4): 1993-2003. |