机械工程学报 ›› 2022, Vol. 58 ›› Issue (9): 244-269.doi: 10.3901/JME.2022.09.244
丁文锋, 曹洋, 赵彪, 徐九华
收稿日期:
2021-10-08
修回日期:
2022-02-15
出版日期:
2022-05-05
发布日期:
2022-06-23
通讯作者:
丁文锋(通信作者),男,1978年出生,博士,教授,博士研究生导师。主要从事难加工材料高效精密磨削技术与应用研究。E-mail:dingwf2000@vip.163.com
E-mail:dingwf2000@vip.163.com
作者简介:
曹洋,男,1989年出生,博士研究生。主要从事航空发动机镍基合金叶片超声振动辅助磨削加工技术研究。E-mail:y.cao1@foxmail.com
基金资助:
DING Wenfeng, CAO Yang, ZHAO Biao, XU Jiuhua
Received:
2021-10-08
Revised:
2022-02-15
Online:
2022-05-05
Published:
2022-06-23
摘要: 超声振动辅助磨削加工技术通过在传统磨削加工基础上叠加高频微幅超声振动,可以减小磨削力,降低磨削温度,提高材料去除率,改善工件表面质量,在航空航天、高档机床、高速列车、能源动力等高端装备高效高品质制造方面具有显著优势和广阔应用前景。现阶段,国内外已经开展了众多超声振动辅助磨削加工技术及装备的研究工作,相关成果已在多种难加工材料关键部件加工中得到工程应用。在概述超声振动辅助磨削加工技术的基本原理、加工优势、主要分类和发展趋势的基础上,系统总结了国内外学者在超声振动辅助磨削装备及设计方法、材料去除机制和表面形成机制方面的研究成果,并对超声振动辅助磨削加工技术未来发展趋势和重要研究问题进行了展望。
中图分类号:
丁文锋, 曹洋, 赵彪, 徐九华. 超声振动辅助磨削加工技术及装备研究的现状与展望[J]. 机械工程学报, 2022, 58(9): 244-269.
DING Wenfeng, CAO Yang, ZHAO Biao, XU Jiuhua. Research Status and Future Prospects of Ultrasonic Vibration-assisted Grinding Technology and Equipment[J]. Journal of Mechanical Engineering, 2022, 58(9): 244-269.
[1] XU Jiuhua, ZHANG Zhiwei, FU Yucan. Review and prospect on high efficiency profile grinding of nickel-based superalloys[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 351-360. 徐九华, 张志伟, 傅玉灿. 镍基高温合金高效成型磨削的研究进展与展望[J]. 航空学报, 2014, 35(2): 351-360. [2] LIANG Qiaoyun, SHAN Kun, LI Zhaorui, et al. Investigation of grain wear in diamond abrasive belt grinding titanium[J]. Diamond and Abrasives Engineering, 2020, 40(4): 59-64. 梁巧云, 单坤, 李兆瑞, 等. 航发钛合金叶片金刚石砂带磨削的磨粒磨损研究[J]. 金刚石与磨料磨具工程, 2020, 40(4): 59-64. [3] DING Wenfeng, MIAO Qing, LI Benkai, et al. Review on grinding technology of nickel-based superalloys used for aero-engine[J]. Journal of Mechanical Engineering, 2019, 55(1): 189-215. 丁文锋, 苗情, 李本凯, 等. 面向航空发动机的镍基合金磨削技术研究进展[J]. 机械工程学报, 2019, 55(1): 189-215. [4] SETTI D, ARRABIYEH P A, KIRSCH B, et al. Analytical and experimental investigations on the mechanisms of surface generation in micro grinding[J]. International Journal of Machine Tools and Manufacture, 2020, 149, 103489. [5] LIU Xiumei, XIAO Guijian, LIU Zhiwu, et al. Research on deformation behavior of NC belt grinding of aero-engine blisk and its test[J]. Diamond and Abrasives Engineering, 2020, 40(3): 25-32. 刘秀梅, 肖贵坚, 刘智武, 等. 航空发动机整体叶盘数控砂带磨削变形行为及其试验研究[J]. 金刚石与磨料磨具工程, 2020, 40(3): 25-32. [6] DING Yulong, MIAO Weipeng, LUO Miaodi, et al. Influence of structure of vitrified bond diamond grinding wheel on its performance[J]. Diamond and Abrasives Engineering, 2020, 40(4): 19-23. 丁玉龙, 苗卫鹏, 骆苗地, 等. 陶瓷结合剂金刚石砂轮组织结构对其性能的影响[J]. 金刚石与磨料磨具工程, 2020, 40(4): 19-23. [7] ZHAO Henghua, FEN Baofu, GAO Guanbin, et al. Application of ultra-high speed grinding technology in the field of machinery manufacturing[J]. Journal of Northeastern University, 2003, 24(6): 564-568. 赵恒华, 冯宝富, 高贯斌, 等. 超高速磨削技术在机械制造领域中的应用[J]. 东北大学学报, 2003, 24(6): 564-568. [8] ZHONG Z W, RAMESH K, YEO S H. Grinding of nickel-based super-alloys and advanced ceramics[J]. Materials and Manufacturing Processes, 2001, 16(2): 195-207. [9] ZHANG Deyuan. Ultrasonic processing in China[J]. Journal of Mechanical Engineering, 2017, 53(19): 1-2. 张德远. 中国的超声加工[J]. 机械工程学报, 2017, 53(19): 1-2. [10] ZHANG Deyuan, LIU Yihang, GENG Daxi, et al. The research progress of ultrasonic machining technology. Electromachining and Mould. 2019, 5: 1-10. 张德远, 刘逸航, 耿大喜, 等. 超声加工技术的研究进展[J]. 电加工与模具, 2019, 5: 1-10. [11] FENG Pingfa, WANG Jianjian, ZHANG Jianfu, et al. Research status and future prospects of rotary ultrasonic machining of hard and brittle materials. Journal of Mechanical Engineering, 2017, 53(19): 3-21. 冯平法, 王健健, 张建富, 等. 硬脆材料旋转超声加工技术的研究现状及展望[J]. 机械工程学报, 2017, 53(19): 3-21. [12] NING F D, CONG W L. Ultrasonic vibration-assisted (UV-A) manufacturing process: State of the art and future perspectives[J]. Journal of Manufacturing Processes, 2020, 51: 174-190. [13] YANG Z C, ZHU L D, ZHANG G X, et al. Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tools and Manufacture, 2020, 156, 103594. [14] LI Shuyu, XIAN Xiaojun. Progress and optimization design of high power piezoelectric ultrasonic vibrating system. Journal of Shaanxi Normal University (Natural Science Edition), 2014, 42(6): 31-39. 林书玉, 鲜小军. 功率超声换能器振动系统的优化设计及其研究进展[J]. 陕西师范大学学报(自然科学版)2014, 42(6): 31-39. [15] YANG Z C, ZHU L D, LIN B, et al. The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding[J]. Ceramics International, 2019, 45: 8873-8889. [16] SHEN J Y, WANG J Q, JIANG B, et al. Study on wear of diamond wheel in ultrasonic vibration-assisted grinding ceramic[J]. Wear, 2015, 332-333: 788-793. [17] VERMA C C, PANDEY P M, DIXIT U S. Modeling of static machining force in axial ultrasonic-vibration assisted milling considering acoustic softening[J]. International Journal of Mechanical Sciences, 2018, 136: 1-6. [18] VERMA C C, PANDEY P M, DIXIT U S. Estimation of workpiece-temperature during ultrasonic-vibration assisted milling considering acoustic softening[J]. International Journal of Mechanical Sciences. 2018, 140: 547-556. [19] SIDDIQ A, SAYED T E. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations[J]. Ultrasonics, 2012, 52: 521-529. [20] DONG S, DAPINO M J. Dynamic system model for ultrasonic lubrication in perpendicular configuration[J]. Ultrasonics, 2017, 75: 98-105. [21] CAO Y, YIN J F, DING W F, et al. Alumina abrasive wheel wear in ultrasonic vibration-assisted creep-feed grinding of Inconel 718 nickel-based superalloy[J]. Journal of Materials Processing Technology, 2021, 297, 117241. [22] LI Yuqin, XIAO Zheng, LI Tao. Effect of ultrasonic assisted on grinding force for TC4 titanium alloy[J]. Materials for Mechanical Engineering, 2019, 43(7): 10-13. 栗育琴, 肖罡, 李涛. 超声辅助对TC4钛合金磨削力的影响[J]. 机械工程材料, 2019, 43(7): 10-13. [23] QI H, WEN D H, LU C D, et al. Numerical and experimental study on ultrasonic vibration-assisted micro- channelling of glasses using an abrasive slurry jet[J]. International Journal of Mechanical Sciences, 2016, 110: 94-107. [24] XIANG Daohui, NIU Xiaoxiao, LI Zhangdong, et al. Experimental study on surface quality of hardened 42CrMo steel processed by ultrasound-assisted grinding[J]. Journal of Henan polytechnic University, 2020, 39(5): 73-79. 向道辉, 牛肖肖, 李章东, 等. 超声辅助磨削淬硬42CrMo钢表面质量试验研究[J]. 河南理工大学学报, 2020, 39(5): 73-79. [25] LIU Hao, JIN Gang, LI Zhanguang, et al. Study on ultrasonic grinding experiment and grinding force model of zirconia ceramics[J]. Mechanical Research and Application, 2019, 4(32): 55-59. 刘浩, 靳刚, 李占光, 等. 氧化锆陶瓷超声磨削实验及磨削力模型研究[J]. 机械研究于应用, 2019, 4(32): 55-59. [26] LV D X, YAN C, CHEN G, et al. Mechanistic prediction for cutting force in rotary ultrasonic machining of BK7 glass based on probability statistics[J]. Ultrasonics, 2020, 101, 106006. [27] CHEN Y, LIANG Y H, Xu J H, et al. Ultrasonic vibration assisted grinding of CFRP composites: Effect of fiber orientation and vibration velocity on grinding forces and surface quality[J]. International Journal of Lightweight Materials and Manufacture, 2018, 1: 189-196. [28] WANG H, HU Y B, CONG W L, et al. A mechanistic model on feeding-directional cutting force in surface grinding of CFRP composites using rotary ultrasonic machining with horizontal ultrasonic vibration[J]. International Journal of Mechanical Sciences, 2019, 155: 450-460. [29] MADARKAR R, AGARWAL S, ATTAR P, et al. Application of ultrasonic vibration assisted MQL in grinding of Ti-6Al-4V[J]. Materials and Manufacturing Processes, 2018, 33(13): 1445-1452. [30] LIU Jun, FAN Baopeng, CHEN Yan, et al. FEM simulation of temperature field in ultrasonic vibration grinding of CFRP[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(6): 821-828. 刘军, 范宝朋, 陈燕, 等. 超声振动磨削CFRP温度场的有限元仿真[J]. 机械科学与技术, 2020, 39(6): 821-828. [31] ZHOU W H, TANG J Y, CHEN H F, et al. A comprehensive investigation of surface generation and material removal characteristics in ultrasonic vibration assisted grinding[J]. International Journal of Mechanical Sciences, 2019, 156: 14-30. [32] WANG H, HU Y B, CONG W L, et al. A novel investigation on horizontal and 3D elliptical ultrasonic vibrations in rotary ultrasonic surface machining of carbon fiber reinforced plastic composites[J]. Journal of Manufacturing Processes, 2020, 52: 12-25. [33] CAO Y, ZHAO B, DING W F, et al. On the tool wear behavior during ultrasonic vibration-assisted form grinding with alumina wheels[J]. Ceramics International, Published online. https://doi.org/10.1016/j.ceramint.2021.06.059. [34] LIANG Z Q, WANG X B. An investigation on wear mechanism of resin-bonded diamond wheel in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire[J]. Journal of Materials Processing Technology, 2012, 212: 868-876. [35] ZHAO Bo, CHEN Fan, TONG Jinglin. Theoretical and experimental research on material removal rate under ultrasonic grinding[J]. Journal of Henan Polytechnic University, 2013, 32(3): 302-307. 赵波, 陈凡, 童景琳. 超声磨削材料去除率的理论分析与试验研究[J]. 河南理工大学学报, 2013, 32(3): 302-307. [36] WANG Dazhong, WU Shujing, LIN Jingpeng, et al. Research on ultrasonic elliptical vibration micro-cutting Inconel718 vased on minimum quantity lubrication[J]. Journal of Mechanical Engineering, 2021, 57(9): 264-272. 王大中, 吴淑晶, 林靖朋, 等. 基于MQL的超声椭圆振动微切削Inconel718的机理研究[J]. 机械工程学报, 2021, 57(9): 264-272. [37] ZHOU W H, TANG J Y, SHAO W. Modelling of surface texture and parameters matching considering the interaction of multiple rotation cycles in ultrasonic assisted grinding[J]. International Journal of Mechanical Sciences, 2020, 166, 105246. [38] WOOD R W, LOOMIS A L. The physical and biological effects of high-frequency sound-waves of great intensity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1927, 4: 417-436. [39] ARO H, KALLIONIEMI H, AHO A J, et al. Ultrasonic device in bone cutting: a histological and scanning electron microscopical study[J]. Acta Orthopaedica Scandinavica, 1981, 52: 5-10. [40] ZAITSEV G N, NIKITKOV N V, BUTUROVICH I K. Effectiveness of surface ultrasonic grinding of ceramics with diamond disks[J]. Glass and Ceramics, 1980, 37: 185-186. [41] WANG Xiankui, LI Hongbin. Ultrasonic belt precision grinding technology[J]. Electromachining and Mould, 1988(4): 17-21. 王先逵, 李洪斌. 超声砂带精密磨削技术[J]. 电加工, 1988(4): 17-21. [42] KOMARAIAH M, REDDY P N. Rotary ultrasonic machining - a new cutting process and its performance[J]. International Journal of Production Research, 1991, 29(11): 2177-2187. [43] WU Y B, FAN Y F, KATO M. A feasibility study of microscale fabrication by ultrasonic-shoe centerless grinding[J]. Precision Engineering, 2006, 30: 201-210. [44] ZHENG J X, XU J W. Experimental research on the ground surface quality of creep feed ultrasonic grinding ceramics (Al2O3)[J]. Chinese Journal of Aeronautics, 2006, 19(4): 359-365. [45] XIAO Yongjun, YANG Weiping, LI Yaozhong, et al. Development of rotary ultrasonic grinding equipment[J]. Design and Research, 2007(6): 70-72. 肖永军, 杨卫平, 李尧忠, 等. 旋转超声磨削装置研制[J]. 设计与研究, 2007(6): 70-72. [46] LI Hua, LI Zheng. Study on the design of ultrasonic vibration internal grinding system shaft based on FEM[J]. Manufacturing Technology & Machine Tool, 2008(3): 135-139. 李华, 李征. 基于有限元的超声振动内圆磨削系统的主轴设计与研究[J]. 制造技术与机床, 2008(3): 135-139. [47] WU Y, LIANG Z, WANG X, et al. Elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire - wear behavior of resin bond diamond wheel[J]. Advanced Materials Research. 2018, 126-128: 573-578. [48] SINGH R. Experimental investigations on machining characteristics of titanium in ultrasonic impact grinding[J]. International Journal of Computational Materials Science and Surface Engineering, 2010, 3(1): 24-33. [49] RABIEI F, RAHIMI A R, HADAD M J. Performance improvement of eco-friendly MQL technique by using hybrid nanofluid and ultrasonic-assisted grinding[J]. International Journal of Advanced Manufacturing Technology, 2017, 93: 1001-1015. [50] ZHAO B, CHEN F, JIA X F, et al. Surface quality prediction model of nano-composite ceramics in ultrasonic vibration-assisted ELID mirror grinding[J]. Journal of Mechanical Science and Technology, 2017, 31(4): 1877-1884. [51] ZHANG Xiaoqiang. Study on temperature field and single cavitation bubble collapse temperature in the grinding zone under ultrasonic vibration cylindrical honing[D]. Taiyuan: North university of China, 2017. 张小强. 超声振动外圆珩磨磨削区温度场及单空化泡溃灭温度研究[D]. 太原: 中北大学, 2017. [52] XIANG D H, ZHOU Z K, LIU Z Y, et al. Abrasive wear of a single CBN grain in ultrasonic-assisted high-speed grinding[J]. International Journal of Advanced Manufacturing Technology, 2018, 98: 67-75. [53] MISHRA V, PANDEY P M. Experimental investigations into electric discharge grinding and ultrasonic vibration-assisted electric discharge grinding of Inconel 601[J]. Materials and Manufacturing Process, 2018, 33(14): 1518-1530. [54] ZHAO B, GUO X C, BIE W B, et al. Thermo-mechanical coupling effect on surface residual stress during ultrasonic vibration-assisted forming grinding gear[J]. Journal of Manufacturing Processes, 2020, 59: 19-32. [55] WANG Y, LIN B, WANG S L, et al. Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing[J]. International Journal of Machine Tools and Manufacture, 2014, 77: 66-73. [56] ZHENG F F, KANG R K, DONG Z G, et al. A theoretical and experimental investigation on ultrasonic assisted grinding from the single-grain aspect[J]. International Journal of Mechanical Sciences, 2018, 148: 667-675. [57] GAO T, ZHANG X P, LI C H, et al. Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding[J]. Journal of Manufacturing Processes, 2020, 51: 44-61. [58] ZHAO B, CHANG B Q, WANG X B, et al. System design and experimental research on ultrasonic assisted elliptical vibration grinding of Nano-ZrO2 ceramics[J]. Ceramics International, 2019(45): 24865-24877. [59] YUAN Songmei, TANG Zhixiang, WU Qi, et al. Design of longitudinal torsional ultrasonic transducer and its performance Test[J]. Journal of Mechanical Engineering. 2019, 55(1): 139-148. 袁松梅, 唐志祥, 吴奇, 等. 纵扭超声换能器设计及其性能测试研究[J]. 机械工程学报, 2019, 55(1): 139-148. [60] CHEN Tao, LIU Defu, YAN Riming, et al. Design of longitudinal bending compound mode ultrasonic elliptical vibration-assisted fiber array polishing system[J]. Journal of Vibration and Shock, 2017, 36(24): 242-249. 陈涛, 刘德福, 严日明, 等. 纵弯复合型超声椭圆振动辅助抛光光纤阵列系统设计[J]. 振动与冲击, 2017, 36(24): 242-249. [61] AKBARI J, BORZOIE H, MAMDUHI M H. Study on ultrasonic vibration effects on grinding process of alumina ceramic[J]. International Journal of Mechanical and Mechatronics Engineering, 2008, 2(5): 722-726. [62] WANG Q Y, LIANG Z Q, WANG X B, et al. Modelling and analysis of generation mechanism of micro-surface topography during elliptical ultrasonic assisted grinding[J]. Journal of Materials Processing Technology, 2020, 279, 116585. [63] XU Ruiling, ZHAO Bo. Study on surface quality of three-dimensional ultrasound-assisted grinding[J]. Test and Quality, 2020(5): 102-105. 徐瑞玲, 赵波. 三维超声辅助磨削的表面质量研究[J]. 检测与质量, 2020(5): 102-105. [64] MA Xinyi. Study on three-dimensional ultrasonic-aided grinding force[J]. Diamond and Abrasive Engineering, 2016, 5(36): 69-74. 马新毅. 三维超声辅助平面磨削力研究[J]. 金刚石与磨料磨具工程, 2016, 5(36): 69-74. [65] XU Chaoliang, TANG Xiaohua, XIA Tianyu, et al. Design of mechatronics system for rotary ultrasonic machining[J]. Machine Tool and Hydraulics, 2014, 42(20): 22-24. 徐超亮, 汤晓华, 夏天煜, 等. 旋转超声机床的机电系统设计[J]. 机床与液压, 2014, 42(20): 22-24. [66] HAN Leizhen. Analysis of dynamic Characteristics of rotary ultrasonic machine tool and research on grinding force and material removal[D]. Harbin: Harbin Institute of Technology, 2020. 韩雷震. 旋转超声机床动态特性分析及磨削力与材料去除研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [67] LI Zhiguo, YAO Zhen, ZHANG Yongjun, et al. Design and experimental study of rotary ultrasonic edge grinding machine[J]. Machinery Design and Manufacture, 2021(5): 92-95. 黎志国, 姚震, 张永俊, 等. 旋转超声磨边机床设计与实验[J]. 机械设计与制造, 2021(5): 92-95. [68] ZHANG Neng, WEI Xin, WANG Yongchao, et al. Experimental study on grinding force of engineering ceramics by ultrasonic vibration grinding[J]. Modular Machine and Automatic Manufacturing Technique, 2019(1): 23-25. 张能, 魏昕, 汪永超, 等. 超声振动磨削工程陶瓷的磨削力试验研究[J]. 组合机床与自动化加工技术, 2019(1): 23-25. [69] DING Shiyan, XU Jiawen, GAN Weimin, et al. Development of the CNC device of ultrasonic grinding the surface of ceramic blade[J]. Manufacturing Technology & Machine Tool, 2010(4): 73-77. 丁仕燕, 徐家文, 干为民, 等. 陶瓷叶片型面超声磨削数控装置研制[J]. 制造技术与机床, 2010(4): 73-77. [70] TANG Jun, ZHAO Bo. Study on a new type of longitudinal-torsional composite ultrasonic vibration system[J]. Mechanical Science and Technology for Aerospace Engineering 2015, 34(5): 742-747. 唐军, 赵波. 一种新型纵扭复合超声振动系统的研究[J]. 机械科学与技术, 2015, 34(5): 742-747. [71] DING K, SU H H, CUI F F, et al. Study on surface/subsurface breakage in ultrasonic assisted grinding of C/SiC composites[J]. International Journal of Advanced Manufacturing Technology, 2017, 91: 3095-3105. [72] FU Junfan, QIN Huibin, WU Xiao, et al. Design and research of longitudinal-flexural resonant ultrasonic grinding transducer with large load[J]. Tool Engineering, 2018, 52(4): 20-24. 付俊帆, 秦慧斌, 吴霄, 等. 大负载纵弯谐振超声磨削变幅器的设计与试验[J]. 工具技术, 2018, 52(4): 20-24. [73] YIN Long, ZHAO Bo, GUO Xingchen, et al. Experimental research on ultrasonic assisted internal grinding of 40Cr15Mo2VN bearing ring[J]. China Mechanical Engineering, 2021, 32(10): 1172-1180. 尹龙, 赵波, 郭星晨, 等. 超声辅助内圆磨削40Cr15Mo2VN轴承套圈的试验研究[J]. 中国机械工程, 2021, 32(10): 1172-1180. [74] LI S S, WANG L J, LI G Z, et al. Small hole drilling of Ti-6Al-4V using ultrasonic-assisted plasma electric oxidation grinding[J]. Precision Engineering, 2021, 67: 189-198. [75] XIE Ou, LI Hua, CAO Yang, et al. Study on contactless power transmission characteristic in rotary ultrasonic vibration machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(5): 736-740. 谢鸥, 李华, 曹洋, 等. 旋转超声振动加工中非接触电能传输特性研究[J]. 机械科学与技术, 2017, 36(5): 736-740. [76] ZHOU Lian, LI Hua. Influence of non-contact electric energy transmission on acoustic system in ultrasonic grinding system[J]. Journal of Suzhou University of Science and Technology, 2019, 32(2): 75-80. 周莲, 李华. 超声磨削系统中非接触电能传输特性对声学系统的影响[J]. 苏州科技大学学报, 2019, 32(2): 75-80. [77] LIANG Z Q, WU Y B, WANG X B, et al. A new two-dimensional ultrasonic assisted grinding (2D-UAG) method and its fundamental performance in monocrystal silicon machining[J]. International Journal of Machine Tools and Manufacture, 2010, 50: 728-736. [78] AZARHOUSHANG B, TAWAKOLI T. Developing a special block sonotrode for ultrasonic-assisted grinding process[J]. International Journal of Mechatronics and Manufacturing System, 2012, 5(2): 165-176. [79] BHADURI D, SOO S L, ASPINWALL D K, et al. A study on ultrasonic assisted creep feed grinding of nickel based superalloys[J]. Procedia CIRP, 2012, 1: 359-364. [80] BHADURI D, SOO S L, NOVOVIC D, et al. Ultrasonic assisted creep feed grinding of Inconel 718[J]. Procedia CIRP, 2013, 6: 615-620. [81] NIK M G, MOVAHHEDY M R, AKBARI J. Ultrasonic-assisted grinding of Ti6Al4V alloy[J]. Procedia CIRP, 2012, 1: 353-358. [82] PAKNEJAD M, ABDULLAH A, AZARHOUSHANG B. Effects of high power ultrasonic vibration on temperature distribution of workpiece in dry creep feed up grinding[J]. Ultrasonic - Sonochemistry, 2017, 39: 392-402. [83] YANG Z C, ZHU L D, NI C B, et al. Investigation of surface topography formation mechanism based on abrasive-workpiece contact rate model in tangential ultrasonic vibration-assisted CBN grinding of ZrO2 ceramics[J]. International Journal of Mechanical Sciences, 2019, 155: 66-82. [84] CAO Y, ZHU Y J, DING W F, et al. Vibration coupling effects and machining behavior of ultrasonic vibration plate device for creep-feed grinding of Inconel 718 nickel-based superalloy[J]. Chinese Journal of Aeronautics, 2022, 35(2): 332-345. [85] CAO Y, ZHU Y J, LI H N, et al. Development and performance of a novel ultrasonic vibration plate sonotrode for grinding[J]. Journal of Manufacturing Processes, 2020, 57: 174-186. [86] NASKAR A, CHOUDHARY A, PAUL S. Surface generation in ultrasonic-assisted high-speed superabrasive grinding under minimum quantity cooling lubrication with various fluids[J]. Tribology International, 2021, 156, 106815. [87] LIN Shuyu, ZHANG Fucheng, GUO Xiaowu. Three dimensional coupled vibration of block-like resonators[J]. Acta Acustica, 1991, 16(2): 91-97. 林书玉, 张福成, 郭孝武. 超声频矩形六面体的三维祸合振动[J]. 声学学报, 1991, 16(2): 91-97. [88] REN Shuchu. Multi-dimensional coupled vibrations of piezoelectric vibrators (Ⅰ) pure piezoelectric vibratiors[J]. Acta Acustica, 1983, 8(3): 147-158. 任树初. 压电振子多维耦合振动(Ⅰ)-纯压电振子[J]. 声学学报, 1983, 8(3): 147-158. [89] REN Shuchu. Multi-dimensional coupled vibrations of piezoelectric vibrators (Ⅱ) composite piezoelectric vibrators[J]. Acta Acustica, 1983, 8(5): 272-279. 任树初. 压电振子多维耦合振动(Ⅱ)-复合电振子[J]. 声学学报, 1983, 8(5): 272-279. [90] LIN Zhongmao. Principle and design of ultrasonic horn[M]. Beijing: Science Press, 1987. 林仲茂. 超声变幅杆的原理和设计[M]. 北京: 科学出版社, 1987. [91] CAO Fengguo. Ultrasonic machining technology[M]. Beijing: Chemical Industry Press, 2004. 曹凤国. 超声加工技术[M]. 北京: 化学工业出版社, 2004. [92] LIN Shuyu. Calculation of torsional vibration ultrasonic horn and its equivalent circuit[J]. Acoustics and Electronics Engineering, 1995, 4: 19-23. 林书玉. 扭转振动超声变幅杆计算及其等效电路[J]. 声学与电子工程, 1995, 4: 19-23. [93] WANG Xiaoyu, LIN Shuyu. Electromechanical equivalent circuit of conical section[J]. Acta Acustica, 2021, 46(2): 271-280. 王晓宇, 林书玉. 锥形剖面径向复合超声换能器的机电等效电路[J]. 声学学报, 2021, 46(2): 271-280. [94] ZHU Kunlun, LI Xianglong, LIU Yifan, et al. Size optimization of sandwich piezoelectric ultrasonic transducer based on workbench[J]. Mechanical Engineer, 2018(6): 271-280. 朱昆仑, 李翔龙, 刘一凡, 等. 基于Workbench的夹心式压电超声换能器的尺寸优化[J]. 机械工程师, 2018(6): 28-30. [95] LU K K, TIAN Y L, LIU C F, et al. Design of a novel 3D ultrasonic vibration platform with tunable characteristics[J]. International Journal of Mechanical Sciences, 2020, 186: 105895. [96] ABDULLAH A, SHAHINI M, PAK A. An approach to design a high power piezoelectric ultrasonic transducer[J]. Journal of Electroceram, 2008, 22: 369-382. [97] ZHANG X F, YANG L, WANG Y, et al. Mechanism study on ultrasonic vibration assisted face grinding of Hard and brittle materials[J]. Journal of Manufacturing Processes, 2020, 50: 520-527. [98] WU Q L, WANG C, CUI M M, et al. Analysis of ultrasonic vibration belt grinding processing method[C]//7th Annual International Conference on Materials Science and Engineering, 2019, 562: 012145. [99] REN Jingxin, HUA Dingan. Grinding principle[M]. Beijing: Publishing House of Electronics Industry, 2011. 任敬心, 华定安. 磨削原理[M]. 北京: 电子工业出版社, 2011. [100] TOUBHANS B, FROMENTIN G, VIPREY F, et al. Machinability of Inconel 718 during turning: Cutting force model considering tool wear, influence on surface integrity[J]. Journal of Materials Processing Technology, 2020, 285: 116809. [101] ZHANG Y Z, FANG C F, HUANG G Q, et al. Modeling and simulation of the distribution of undeformed chip thicknesses in surface grinding[J]. International Journal of Machine Tools and Manufacture, 2018, 127: 14-27. [102] YANG M, LI C H, ZHANG Y B, et al. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J]. International Journal of Machine Tools and Manufacture, 2017, 122: 55-65. [103] WU B F, ZHAO B, DING W F, SU H H. Investigation of the wear characteristics of microcrystal alumina abrasive wheels during the ultrasonic vibration-assisted grinding of PTMCs[J]. Wear, 2021, 477: 203844. https://doi.org/10.1016/j.wear.2021.203844. [104] LI B K, DAI C W, DING W F, et al. Prediction on grinding force during grinding powder metallurgy nickel-based superalloy FGH96 with electroplated CBN abrasive wheel[J]. Chinese Journal of Aeronautics, 2021, 34(8): 65-74. [105] DURGUMAHANTI U P, SINGH V, RAO P V. A new model for grinding force prediction and analysis[J], International Journal of Machine Tools and Manufacture, 2010, 50: 231-240. [106] DAI C W, YIN Z, DING W F, et al. Grinding force and energy modeling of textured monolayer CBN wheels considering undeformed chip thickness nonuniformity[J]. International Journal of Mechanical Sciences. 2019, 157-158: 221-230. [107] ABDULLAH A, SOTOODEZADEH M, ABEDINI R, et al. Experimental study on ultrasonic use in dry creep-feed up-grinding of aluminum 7075 and steel X210Cr12[J], International Journal of Precision Engineering and Manufacturing, 14(2): 191-198. [108] SIDDIQ A, SAYED T E. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations[J]. Ultrasonics, 2012, 52: 521-529. [109] WU B F, CAO Y, ZHAO J S, et al. The effect of superimposed ultrasonic vibration on tensile behavior of 6061-T6 aluminum alloy[J]. International Journal of Advanced Manufacturing Technology, 2021, 116: 1843- 1854. https://doi.org/10.1007/s00170-021-07564-8. [110] MITROFANOV A V, AHMED N, BABISKY V I, et al. Effect of lubrication and cutting parameters on ultrasonically assisted turning of Inconel 718[J]. Journal of Materials Processing Technology, 2005, 162-163: 649-654. [111] YEN Y C, JAIN A, TAYLAN A. A finite element analysis of orthogonal machining using different tool edge geometries[J]. Journal of Materials Processing Technology, 2004, 146: 72-81. [112] XIAO X Z, ZHENG K, LIAO W H, et al. Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics[J]. International Journal of Machine Tools and Manufacture, 2016, 104: 58-67. [113] LI C, ZHANG F H, MENG B B, et al. Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics[J]. Ceramics International, 2017, 43: 2981-2993. [114] LIU Shuliang, CHEN Tao, WEI Yuxiang, et al. Study on surface quality of cfrp after rotary ultrasonic face grinding[J]. Aeronautical Manufacturing Technology, 2016, 5: 57-61. 刘树良, 陈涛, 魏宇祥, 等. 旋转超声振动断面磨削CFRP表面质量研究[J]. 航空制造技术, 2016, 5: 57-61. [115] WANG Wei, CHEN Yan, MOU Juan, et al. Experiment on CFRP edge machining with brazed diamond grinding head[J]. Diamond and Abrasives Engineering, 2012, 32(1): 15-18. 王巍, 陈燕, 牟娟, 等. 钎焊金刚石工具磨削CFRP的试验研究[J]. 金刚石与磨料磨具工程, 2012, 32(1): 15-18. [116] ZHOU Jingwen, QIN Wenjing, MU Yingjuan, et al. Comparative study on machining of CFRP by end mill and abrasive router[J]. Diamond and Abrasives Engineering, 2020, 40(4): 76-80. 周井文, 秦文津, 穆英娟, 等. 碳纤维复合材料铣削与磨削加工对比研究[J]. 金刚石与磨料磨具工程, 2020, 40(4): 76-80. [117] FENG Ruo, HUANG Jinlan. Ultrasonic cleaning and its physical mechanism[J]. Journal of Applied Acoustics, 1994, 1(3): 42-47. 冯若, 黄金兰. 超声清洗及其物理机制[J]. 应用声学, 1994, 1(3): 42-47. [118] WANG H, PEI Z J, CONG W L. A mechanistic cutting force model based on ductile and brittle fracture material removal modes for edge surface grinding of CFRP composites using rotary ultrasonic machining[J]. International Journal of Mechanical Sciences, 2020, 176: 105551. [119] WANG H, PEI Z J, CONG W L. A feeding-directional cutting force model for end surface grinding of CFRP composites using rotary ultrasonic machining with elliptical ultrasonic vibration[J]. International Journal of Machine Tools and Manufacture, 2020, 152: 103540. [120] SUN J, GUO Y B. A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V[J]. Journal of Materials Processing Technology, 2009, 209: 4036-4042. [121] WDOWIK R, PORZYCKI J, MAGDZIAK M. Measurements of surface texture parameters after ultrasonic assisted and conventional grinding of ZrO2 based ceramic material characterized by different states of sintering[J]. Procedia CIRP, 2017, 62: 293-298. [122] LIANG Y H, CHEN Y, CHEN B B, et al. Feasibility of ultrasonic vibration assisted grinding for carbon fiber reinforced polymer with monolayer brazed grinding tools[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20: 1083-1094. [123] LI L, TANG J Y, WEN Y Q, et al. Numerical simulation of ultrasonic-assisted grinding surfaces with fast Fourier transform[J]. Journal of Tribology, 2020, 142: 092301. [124] WEN Y Q, TANG J Y, ZHOU W, et al. Study on contact performance of ultrasonic-assisted grinding surface[J]. Ultrasonics, 2019, 91: 193-200. [125] SUN S Y, TANG J Y, SHAO W, et al. Research on the matching relationship between ultrasonic-assisted grinding parameters and workpiece surface roughness[J]. International Journal of Advanced Manufacturing Technology, 2019, 102: 487-496. [126] EGASHIRA K, KUMAGAI R, YAMAGUCHI Y, et al. Drilling of microholes down to 10 μm in diameter using ultrasonic grinding[J]. Precision Engineering, 2014, 38: 605-610. [127] LI L, TANG J Y, WEN Y Q, et al. Characterization of ultrasonic-assisted grinding surface via the evaluation of the autocorrelation function[J]. International Journal of Advanced Manufacturing Technology, 2019, 104: 4219-4230. [128] WANG Y, LIN B, CAO X Y, et al. An experimental investigation of system matching in ultrasonic vibration assisted grinding for titanium[J]. Journal of Materials Processing Technology, 2014, 214: 1871-1878. [129] CHEN Y R, SU H H, QIAN N, et al. Ultrasonic vibration-assisted grinding of silicon carbide ceramics based on actual amplitude measurement: Grinding force and surface quality[J]. Ceramics International, 2021, 47: 15433-15441. [130] LI D G, TANG J Y, CHEN H F, et al. Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel[J]. International Journal of Advanced Manufacturing Technology, 2019, 101: 1467-1479. [131] UNYANIN A N, KHOUSAINOV A S. Study of forces during ultrasonic vibration assisted grinding[J]. Procedia Engineering, 2016, 150: 1000-1006. [132] CHEN F, LI G X, ZHAO B, et al. Thermomechanical coupling effect on characteristics of oxide film during ultrasonic vibration-assisted ELID grinding ZTA ceramics[J]. Chinese Journal of Aeronautics, 2021, 34(6): 125-140. [133] CHEN H F, TANG J Y, LANG X J, et al. Influences of dressing lead on surface roughness of ultrasonic-assisted grinding[J]. International Journal of Advanced Manufacturing Technology, 2014, 71: 2011-2015. [134] ELHAMI S, RAZFAR M R, FARAHNAKIAN M. Analytical, numerical and experimental study of cutting force during thermally enhanced ultrasonic assisted milling of hardened AISI 4140[J]. International Journal of Mechanical Sciences, 2015, 103: 158-171. [135] UHLMANN E. Surface formation in creep feed grinding of advanced ceramics with and without ultrasonic assistance[J]. Annals of the CIRP, 1998, 47: 249-252. [136] BHADURI D, SOO S L, ASPINWALL D K, et al. Ultrasonic assisted creep feed grinding of gamma titanium aluminide using conventional and superabrasive wheels[J]. CIRP Annals - Manufacturing Technology, 2017, 66: 241-344. [137] TAWAKOLI T, AZARHOUSHANG B. Influence of ultrasonic vibrations on dry grinding of soft steel[J]. International Journal of Machine Tools and Manufacture, 2008, 48: 1585-1591. [138] ZHANG Hongli, ZHANG Jianhua. Effects of tangential ultrasonic vibration on grinding force of single abrasive grit[J]. Acta Armamentarii, 2011, 32(4): 487-492. 张洪丽, 张建华. 切向超声振动辅助磨削对单颗粒切削力的影响[J]. 兵工学报, 2011, 32(4): 487-492. [139] MOLAIE M M, AKBARI J, MOVAHHEDY M R. Ultrasonic assisted grinding process with minimum quantity lubrication using oil-based nanofluids[J]. Journal of Cleaner Production, 2016, 129: 212-222. |
[1] | 王艳, 李德蔺, 刘建国, 宋红林, 彭水平, 汪锐. 基于动态轮廓采样法的轴向超声振动辅助磨削工件表面形貌预测与试验验证[J]. 机械工程学报, 2018, 54(21): 221-230. |
[2] | 王秋燕, 梁志强, 王西彬, 周天丰, 赵文祥, 吴勇波, 焦黎. 超声振动螺线磨削表面微观形貌建模与仿真研究[J]. 机械工程学报, 2017, 53(19): 83-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||