• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (23): 296-305.doi: 10.3901/JME.2022.23.296

• 制造工艺与装备 • 上一篇    下一篇

扫码分享

磨料水射流单次铣削钛合金截面轮廓特征预测

万亮1,2, 钱亦楠1,2, 涂翊翔1,2, 杜航2, 巫世晶1,2, 李登1,2   

  1. 1. 武汉大学水射流理论与新技术湖北省重点实验室 武汉 430072;
    2. 武汉大学动力与机械学院 武汉 430072
  • 收稿日期:2022-04-08 修回日期:2022-07-28 出版日期:2022-12-05 发布日期:2023-02-08
  • 通讯作者: 李登(通信作者),男,1987年出生,博士,副教授,博士研究生导师。主要研究方向为新型高效射流设计、优化与应用,复合场精密加工与特种加工技术。E-mail:2008lee@whu.edu.cn
  • 作者简介:万亮,男,1993年出生,博士研究生。主要研究方向为磨料水射流精密加工,复杂曲面重建。E-mail:wanliang@whu.edu.cn
  • 基金资助:
    国家自然科学基金(52175245,51805188)、湖北省自然科学基金(2021CFB462)和国家重点研发计划(2018YFC0808401)资助项目。

Prediction of the Profile Features of Titanium Alloy Milled by Abrasive Waterjet with a Single Pass

WAN Liang1,2, QIAN Yinan1,2, TU Yixiang1,2, DU Hang2, WU Shijing1,2, LI Deng1,2   

  1. 1. Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan 430072;
    2. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072
  • Received:2022-04-08 Revised:2022-07-28 Online:2022-12-05 Published:2023-02-08

摘要: 钛合金广泛应用于航空航天等领域,但存在加工困难和加工效率低的难题。磨料水射流技术具有冷态和能量密度高等特点,加工钛合金优势明显。为探究磨料水射流铣削钛合金的特性,综合考虑射流压力、磨料流量、靶距、射流角度和进给速度五个因素加工截面轮廓的影响,以TC4钛合金为试样进行单次铣削正交实验,并以截面轮廓最大深度hmax、最大宽度bmax和半深宽度b0.5为特征评价目标。首先通过量纲分析法建立了预测截面轮廓特征的经验模型,然后根据轮廓特征影响因素的非线性特点建立了BP神经网络预测模型,再引入PSO算法对模型的权重进行全局优化建立了PSO-BP预测模型。研究结果表明:三种模型预测的平均误差均小于10%,经验模型的预测精度高于BP网络模型,但低于PSO-BP网络模型。与BP网络模型相比,PSO-BP网络模型的hmaxbmaxb0.5的平均误差分别下降了25.09%、14.67%和9.66%,优化后的模型显著提高了截面轮廓特征预测的准确度,可为提高磨料水射流铣削钛合金效率提供工艺参数指导。

关键词: 磨料水射流, 钛合金, 神经网络, 粒子群算法, 轮廓

Abstract: Titanium alloy is widely used in the field of aerospace, but it is difficult to process and suffers the problem of low processing efficiency. Abrasive waterjet has many advantages such as cold working and high energy density, and starts to be an effective method for processing titanium alloy. In order to study the characteristics titanium alloy processed by abrasive waterjet, milling experiments using TC4 specimen with a single pass were designed and conducted by considering the influences of jet pressure, abrasive flow rate, stand-off distance, jet angle, and feed rate. Moreover, the maximum depth hmax, maximum width bmax, and half-depth width b0.5 of the milled surface were used as the evaluation objectives. An empirical model for predicting these three parameters was established by dimensional analysis, a BP neural network prediction model was established according to the strong non-linear characteristics of milling factors affecting the profile, and BP-PSO model was proposed by introducing PSO algorithm to optimize the weight of the model globally. The results show that the average errors of the three models are all less than 10%. The prediction accuracy of the empirical model was higher than that of the BP network model but lower than the PSO-BP network model. Compared with the BP network model, the average errors of maximum depth hmax, maximum width bmax, and half-depth width b0.5 of PSO-BP network model are reduced by 25.09%, 14.67%, and 9.66%, respectively. The optimized model significantly improves the accuracy for predicting the surface profile features of TC4 titanium alloy milled by abrasive waterjet, and also provides reasonable process parameters.

Key words: abrasive waterjet, titanium alloy, neural network, particle swarm algorithm, profile

中图分类号: