机械工程学报 ›› 2022, Vol. 58 ›› Issue (23): 164-177.doi: 10.3901/JME.2022.23.164
靳子昂1, 韩振宇1, 项宇1, 孙守政1,2, 富宏亚1
收稿日期:
2021-12-07
修回日期:
2022-05-26
出版日期:
2022-12-05
发布日期:
2023-02-08
通讯作者:
孙守政(通信作者),男,1989年出生,博士后,讲师。主要研究方向为复合材料自动化成型技术。E-mail:szsun@hit.edu.cn
作者简介:
靳子昂,男,1993年出生,博士研究生。主要研究方向为自动铺丝技术。E-mail:jinziang@hit.edu.cn
基金资助:
JIN Ziang1, HAN Zhenyu1, XIANG Yu1, SUN Shouzheng1,2, FU Hongya1
Received:
2021-12-07
Revised:
2022-05-26
Online:
2022-12-05
Published:
2023-02-08
摘要: 自动铺丝作为一种先进的复合材料自动化成型技术被广泛应用于航空航天等领域,其中采用变角度自动铺丝能够提升航空航天结构件的设计空间,对于提高构件整体力学性能具有重要的意义。但目前该技术的加工工艺并不成熟且在成型过程中不可避免产生制造缺陷,对构件的力学性能带来不利的影响。针对变角度自动铺丝成型过程中的制造缺陷特性及其主要影响因素进行综述,介绍了自动铺丝的工作原理及变角度铺丝的优势,分析了褶皱、间隙和重叠缺陷的形成机制及其对变刚度层合板力学性能的影响,深入探讨了变角度铺丝制造缺陷的影响因素类型及作用机理,并论述了制造缺陷的抑制方法,最后总结了现阶段变角度自动铺丝技术存在的不足,并对该技术的未来研究趋势进行了展望。
中图分类号:
靳子昂, 韩振宇, 项宇, 孙守政, 富宏亚. 变角度自动铺丝制造缺陷特性及影响因素的研究进展[J]. 机械工程学报, 2022, 58(23): 164-177.
JIN Ziang, HAN Zhenyu, XIANG Yu, SUN Shouzheng, FU Hongya. Research Progress on Defect Characteristics and Influencing Factors of Variable Angle Fiber Placement[J]. Journal of Mechanical Engineering, 2022, 58(23): 164-177.
[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007,24(1):1-12.DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12. [2] LIU Y,ZWINGMANN B,SCHLAICH M. Carbon fiber reinforced polymer for cable structures-A review[J]. Polymers,2015,7:2078-2099. [3] DHINAKARAN V,SURENDAR K V,RIYAZ M S H,et al. Review on study of thermosetting and thermoplastic materials in the automated fiber placement process[J]. Materials Today-Proceedings,2020,27:812-815. [4] SUN S Z,HAN Z Y,FU H Y,et al. Defect characteristics and online detection techniques during manufacturing of FRPs using automated fiber placement:A review[J]. Polymers,2020,12(6):1337. [5] BECKWITH S W. Automated fiber placement,robotics,out-of-autoclave thermosets,thermoplastics-technologies making significant advances in aerospace applications[J]. Sampe Journal,2013,49(5):5-5. [6] RAJU B R,SURESHA B,VARADARAJAN Y S,et al. Experimental study on drilling of participate filled glass-epoxy composites manufactured by hand lay-up technique[J]. International Journal of Materials Science,2012,7(2):93-104. [7] DAVALLO M,PASDAR H. Comparison of mechanical properties of glass-polyester composites formed by resin transfer moulding and hand lay-up technique[J]. International Journal of Chemtech Research,2009,1(3):470-475. [8] GU Y,LI M,LI Y,et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica Et Astronautica Sinica,2015,36(8):2773-2797. [9] LUKASZEWICZ D H J A,WARD C,POTTER K D. The engineering aspects of automated prepreg layup:History,present and future[J]. Composites Part B-Engineering,2012,43(3):997-1009. [10] 王显峰,张育耀,赵聪,等. 复合材料自动铺丝设备研究现状[J]. 航空制造技术,2018,61(14):83-90.WANG Xianfeng,ZHANG Yuyao,ZHAO Cong,et al. Research status of composite automatic wire laying equipment[J]. Aeronautical Manufacturing Technology,2018,61(14):83-90. [11] HAN Z Y,SUN S Z,FU H Y,et al. Multi-scale low-entropy method for optimizing the processing parameters during automated fiber placement[J]. Materials,2017,10(9):1024. DOI:10.3390/ma10091024 [12] DENKENA B,SCHMIDT C,VOLTZER K,et al. Thermographic online monitoring system for automated fiber placement processes[J]. Composites Part B-Engineering,2016,97:239-243. [13] AKBARZADEH A H,NIK M A,PASINI D. Vibration responses and suppression of variable stiffness laminates with optimally steered fibers and magneto strictive layers[J]. Composites Part B-Engineering,2016,91:315-326. [14] 邵忠喜,韩振宇,李玥华,等. 纤维铺放设备中丝束增减控制方法及其比较[J]. 航空学报,2011,32(1):164-171.SHAO Zhongxi,HAN Zhenyu,LI Yuehua,et al. Control methods and comparison of tow increase and decrease in fiber placement equipment[J]. Acta Aeronautica et Astronautica Sinica,2011,32(1):164-171. [15] LOZANO G G,TIWARI A,TURNER C,et al. A review on design for manufacture of variable stiffness composite laminates[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2016,230(6):981-992. [16] BALEY C,KERVOELEN A,LAN M,et al. Flax/PP manufacture by automated fiber placement (AFP)[J]. Materials & Design,2016,94:207-213. [17] MILENSKI B,BENSON V. Recent advances in automated fiber placement[J]. Sampe Journal,2014,50(2):7-14. [18] YASSIN K,HOJJATI M. Processing of thermoplastic matrix composites through automated fiber placement and tape laying methods:A review[J]. Journal of Thermoplastic Composite Materials. 2018,31(12):1676-1725. [19] PEREIRA D A,GUIMARAES T A M,RESENDE H B,et al. Numerical and experimental analyses of modal frequency and damping in tow-steered CFRP laminates[J]. Composite Structures,2020,244:112190. [20] LOPES C S,GURDAL Z,CAMANHO P P. Tailoring for strength of composite steered-fiber panels with cutouts[J]. Composites Part A-Applied Science & Manufacturing,2010,41(12):1760-1767. [21] NIK M A,FAYAZBAKHSH K,PASINI D,et al. Surrogate-based multi-objective optimization of a composite laminate with curvilinear fibers[J]. Composite Structures,2012,94(8):2306-2313. [22] HONDA S,NARITA Y. Vibration design of laminated fibrous composite plates with local anisotropy induced by short fibers and curvilinear fibers[J]. Composite Structures,2011,93(2):902-910. [23] FALCO O,LOPES C S,NAYA F,et al. Modelling and simulation of tow-drop effects arising from the manufacturing of steered-fiber composites[J]. Composites Part A-Applied Science & Manufacturing,2017,93:59-71. [24] SETOODEH S,ABDALLA M M,IJSSELMUIDEN S T,et al. Design of variable-stiffness composite panels for maximum buckling load[J]. Composite Structures,2009,87(1):109-117. [25] GHAYOUR M,HOJJATI M,GANESAN R. Effect of tow gaps on impact strength of thin composite laminates made by automated fiber placement:Experimental and semi-analytical approaches[J]. Composite Structures,2020,248,112536. [26] CHEVALIER P L,KASSAPOGLOU C,GURDAL Z. Fatigue behavior of composite laminates with automated fiber placement induced defects-A review[J]. International Journal of Fatigue,2020,140:105775. [27] WOIGK W,HALLETT S R,JONES M I,et al. Experimental investigation of the effect of defects in automated fiber placement produced composite laminates[J]. Composite Structures,2018,201:1004-1017. [28] OROMIEHIE E,PRUSTY B G,COMPSTON P,et al. Automated fiber placement based composite structures:Review on the defects,impacts and inspections techniques[J]. Composite Structures,2019,224:110987. [29] BAKHSHI N,HOJJATI M. Time-dependent wrinkle formation during tow steering in automated fiber placement[J]. Composites Part B-Engineering,2019,165:586-593. [30] RAJAN S,SUTTON M A,WEHBE R,et al. Experimental investigation of prepreg slit tape wrinkling during automated fiber placement process using StereoDIC[J]. Composites Part B-Engineering,2019,160:546-557. [31] CAO Z L,HAN Z Y,FU F Y,et al. Variable-angle trajectory planning for fiber placement:A review[J]. Emerging Materials Research,2017,6(1):74-81. [32] KIM B C,POTTER K,WEAVER P M. Continuous tow shearing for manufacturing variable angle tow composites-ScienceDirect[J]. Composites Part A-Applied Science & Manufacturing,2012,43(8):1347-1356. [33] AKBARZADEH A H,NIK M A,PASINI,D. The role of shear deformation in laminated plates with curvilinear fiber paths and embedded defects[J]. Composite Structures,2014,118:217-227. [34] NIK M A,FAYAZBAKHSH K,PASINI D,et al. A comparative study of metamodeling methods for the design optimization of variable stiffness composites[J]. Composite Structures,2014,107:494-501. [35] WU K C,TATTING B,SMITH B,et al. Design and manufacturing of tow-steered composite shells using fiber placement[C]//50th AIAA/ASME/ASCE/AHS Structures,Structural Dynamics,and Materials Conference,May 4,2009,California. [36] ALLISON B D,EVANS J L. Effect of fiber waviness on the bending behavior of S-glass/epoxy composites[J]. Materials & Design,2012,36:316-322. [37] MUKHOPADHYAY S,JONES M I,HALLETT S R. Tensile failure of laminates containing an embedded wrinkle; numerical and experimental study[J]. Composites Part A-Applied Science & Manufacturing,2015,77(1):219-228. [38] MUKHOPADHYAY S,JONES M I,HALLETT S R. Compressive failure of laminates containing an embedded wrinkle; experimental and numerical study[J]. Composites Part A-Applied Science & Manufacturing,2015,73:132-142. [39] BENDER J J,HALLETT S R,LINDGAARD E. Parametric study of the effect of wrinkle features on the strength of a tapered wind turbine blade sub-structure[J]. Composite Structures,2019,218:120-129. [40] NARTEY M,ZHANG T,GONG B,et al. Understanding the impact of fiber wrinkle architectures on composite laminates through tailored gaps and overlaps[J]. Composites Part B-Engineering,2020,196:108097. [41] BLOM A W,SETOODEH S,HOL J M A M,et al. Design of variable-stiffness conical shells for maximum fundamental eigenfrequency[J]. Computers Structures,2008,86(9):870-878. [42] NIK M A,FAYAZBAKHSH K,PASINI D,et al. Optimization of variable stiffness composites with embedded defects induced by Automated Fiber Placement[J]. Composite Structures,2014,107:160-166. [43] FAYAZBAKHSH K,NIK M A,PASINI D,et al. Defect layer method to capture effect of gaps and overlaps in variable stiffness laminates made by Automated Fiber Placement[J]. Composite Structures,2013,97:245-251. [44] HEINECKE F,BRINK W V D,WILLE T. Assessing the structural response of automated fiber placement composite structureswith gaps and overlaps by means of numerical approaches[C]//20th International Conference on Composite Materials,July 19-24,2015,Copenhagen. [45] LAN M,CARTIE D,DAVIES P,et al. Influence of embedded gap and overlap fiber placement defects on the microstructure and shear and compression properties of carbon-epoxy laminates[J]. Composites Part A-Applied Science and Manufacturing,2016,82:198-207. [46] BELHAJ M,HOJJATI M. Wrinkle formation during steering in automated fiber placement:Modeling and experimental verification[J]. Journal of Rnforced Plastics and Composites,2018,37(6):396-409. [47] MATVEEV M Y,SCHUBEL P J,LONG A C,et al. Understanding the buckling behaviour of steered tows in automated dry fiber placement (ADFP)[J]. Composites Part A-Applied Science and Manufacturing,2016,90:451-456. [48] SMITH R,QURESHI Z,SCAIFE R,et al. Limitations of processing carbon fiber reinforced plastic/polymer material using automated fiber placement technology[J]. Journal of Reinforced Plastics & Composites,2016,35(21):1527-1542. [49] DUBOIS O,LECAM J B,BEAKOU A. Experimental analysis of prepreg tack[J]. Experimental Mechanics,2010,50(5):599-606. [50] ZHAO C,XIAO J,HUANG W,et al. Layup quality evaluation of fiber trajectory based on prepreg tow deformability for automated fiber placement[J]. Journal of Reinforced Plastics and Composites,2016,35(21):1576-1585. [51] 赵聪. 铺丝过程纤维面内屈曲机理及其对构件力学性能影响规律研究[D]. 南京:南京航空航天大学,2017.ZHAO Cong. Formation mechanism of in-plane fiber waviness and its effect on performance of composites in automated fiber placement[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2017. [52] WEHBE R,TATTING B,RAJAN S,et al. Geometrical Modeling of Tow Wrinkles in Automated Fiber Placement[J]. Composite Structures,2020,246:112394. [53] 郑广强,姚锋,周晓芹. 自动铺丝技术及其在A350制造过程中的应用[J]. 航空制造技术,2017,60(16):76-82.ZHENG Guangqiang,YAO Feng,ZHOU Xiaoqin. Automatic wire laying technology and its application in A350 manufacturing process[J]. Aeronautical Manufacturing Technology,2017,60(16):76-82. [54] MARIATTI M,NASIR M,ISMAIL H. Effect of Prepreg geometry on the Prepreg and plain weave composite properties[J]. Journal of Reinforced Plastics & Composites,2002,21(8):711-722. [55] BAKHSHI N,HOJJATI M. An experimental and simulative study on the defects appeared during tow steering in automated fiber placement[J]. Composites Part A-Applied Science & Manufacturing,2018,113:122-131. [56] 方宜武,王显峰,顾善群,等.自动铺丝过程中预浸料的侧向弯曲[J]. 材料工程,2015,43(4):47-52.FANG Yiwu,WANG Xianfeng,GU Shanqun,et al. Lateral bending of prepreg during automated fiber placement[J]. Joural of Materials Engineering,2015,43(4):47-52. [57] 张鹏,孙容磊,连海涛,等. 自动铺带铺层贴合形成机制[J]. 复合材料学报,2014,31(1):40-48.ZHANG Peng,SUN Ronglei,LIAN Haitao,et al. Bonding mechanism of ply during automated tape laying process[J]. Acta Materiae Compositae Sinica,2014,31(1):40-48. [58] GUTOWSKI T G,BONHOMME L. The Mechanics of Prepreg Conformance[J]. Journal of Composite Materials,1988,22(3):204-223. [59] CROSSLEY R J,SCHUBEL P J,WARRIOR N A. The experimental determination of prepreg tack and dynamic stiffness[J]. Composites Part A-Applied Science & Manufacturing,2012,43(3):423-434. [60] CROSSLEY R J,SCHUBEL P J,DEFOCATIIS D S A. Time-temperature equivalence in the tack and dynamic stiffness of polymer prepreg and its application to automated composites manufacturing[J]. Composites Part A-Applied Science & Manufacturing,2013,52:126-133. [61] 文琼华,王显峰,何思敏,等. 温度对预浸料铺放效果的影响[J]. 航空学报,2011,32(9):1740-1745.WEN Qionghua,WANG Xianfeng,HE Simin,et al. Influence of temperature on placement effect of prepreg[J]. Acta Aeronautica et Astronautica Sinica,2011,32(9):1740-1745. [62] 朱黎黎,张佐光,李敏,等. 工艺温度下树脂与纤维的接触角及其粘附作用研究[J]. 复合材料学报,2010,27(5):41-46.ZHU Lili,ZHANG Zuoguang,LI Min,et al. Contact angle and action of adhesion between epoxy resin and fibers at processing temperatures[J]. Acta Materiae Compositae Sinica,2010,27(5):41-46. [63] 陆楠楠,肖军,齐俊伟,等. 面向自动铺放的预浸料动态黏性实验研究[J]. 航空学报,2014,35(1):279-286.LU Nannan,XIAO Jun,QI Junwei,et al. Experimental research on prepreg dynamic tack based on automated placement process[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1):279-286. [64] 谢林杉,陈浩然,王浩宇. 面向复杂回转体的T700级碳纤维/双马树脂材料铺放适应性[J]. 航空学报,2020,41(4):294-303.XIE Linshan,CHEN Haoran,WANG Haoyu. Placement suitability of T700 carbon fiber/bismaleimide resin prepreg for complex rotary bodies in AFP[J]. Acta Aeronautica et Astronautica Sinica,2020,41(4):294-303. [65] BEAKOU A,CANO M,LECAM J B,et al. Modelling slit tape buckling during automated prepreg manufacturing:A local approach[J]. Composite Structures,2011,93(10):2628-2635. [66] 蔡立成,彭啸,汪海晋,等. 铺放工艺参数对预浸料丝束曲线铺贴质量的影响[J]. 复合材料学报,2021,38(6):14. CAI Licheng,PENG Xiao,WANG Haijin,et al. Influence on laying process parameters on curve trajectory placement quality of prepreg tow[J]. Acta Materiae Compositae Sinica,2021,38(6):14. [67] 舒展,彭啸,李发飞,等. 基于探针试验的预浸料黏性内聚力模型[J]. 航空学报,2018,39(2):280-292.SHU Zhan,PENG Xiao,LI Fafei,et al. Cohesive zone model for prepreg tack based on probe test[J]. Acta Aeronautica et Astronautica Sinica,2018,39(2):280-292. [68] ZHAO C,WANG B D,XIAO J. Macroscopic characterization of fiber micro-buckling and its influence on composites tensile performance[J]. Journal of Reinforced Plastics and Composites,2017,36(3):196-205. [69] LOPES C S,GURDAL Z,CAMANHO P P. Variable-stiffness composite panels:Buckling and first-ply failure improvements over straight-fiber laminates[J]. Computers & Structures,2008,86(9):897-907. [70] 赵聪,肖军,王显峰,等. 丝束张力对自动铺丝成型工艺的影响[J]. 航空学报,2016,37(4):1384-1392.ZHAO Cong,XIAO Jun,WANG Xianfeng,et al. Effect of tows tension on automated fiber placement process[J]. Acta Aeronautica et Astronautica Sinica,2016,37(4):1384-1392. [71] CEMENSK J,RUDBERG T,HENSCHEID M. Automated in-process inspection system for AFP machines[J]. Sae International Journal of Aerospace,2015,8(2):303-309. [72] ARAO Y,KOYANAGI J,UTSUNOMIYA S,et al. Effect of ply angle misalignment on out-of-plane deformation of symmetrical cross-ply CFRP laminates:Accuracy of the ply angle alignment[J]. Composite Structures,2011,93(4):1225-1230. [73] LI S J,ZHAN L H,CHEN R,et al. Formation,influence mechanism and experimental characterization of composite porosity[J]. Rare Metal Materials and Engineering,2016,45(9):2282-2286. [74] BLOM A W,LOPES C S,KROMWIIK P J,et al. A theoretical model to study the influence of tow-drop areas on the stiffness and strength of variable-stiffness laminates[J]. Journal of Composite Materials,2009,43(5):403-425. [75] 宋桂林,王显峰,赵聪,等. 规则回转体自动铺丝轨迹规划与丝束增减[J]. 航空学报,2020,41(11):383-393.SONG Guilin,WANG Xianfeng,ZHAO Cong,et al. Fiber placement trajectory planning and tows increase or decrease algorithm for revolution body[J]. Acta Aeronautica et Astronautica Sinica,2020,41(11):383-393. [76] FALCO O,MAYUGO J A,LOPES C S,et al. Variable-stiffness composite panels:Defect tolerance under in-plane tensile loading[J]. Composites Part A-Applied Science & Manufacturing,2014,63(18):21-31. [77] KIM B C,WEAVER P M,POTTER K. Manufacturing characteristics of the continuous tow shearing method for manufacturing of variable angle tow composites[J]. Composites Part A-Applied Science and Manufacturing,2014,61:141-151. |
[1] | 赵希坤, 李聪波, 杨勇, 吕岩, 姜书艳. 数据-机理混合驱动下考虑刀具柔性的柔性加工工艺参数能效优化方法[J]. 机械工程学报, 2024, 60(7): 236-248. |
[2] | 李艳, 耿韶宁, 蒋平, 李元泰, 顾思远, 王建庄. 超高功率激光-电弧复合焊接飞溅演化行为及抑制方法[J]. 机械工程学报, 2024, 60(16): 98-107. |
[3] | 程吉, 曹宏东, 屈蜀光, 郑凯伦, 何祝斌. 基于黏塑性本构的6061铝合金管热气胀成形工艺参量建模研究[J]. 机械工程学报, 2024, 60(16): 108-117. |
[4] | 高转妮, 王磊磊, 李响, 刘志强, 吕飞阅, 黎一帆, 占小红. 7075铝合金激光熔丝增材制造热循环和温度梯度对熔池凝固组织的影响研究[J]. 机械工程学报, 2024, 60(1): 96-118. |
[5] | 刘伟军, 索英祁, 姜兴宇, 田志强, 张栋, 杨国哲, 王弘玥, 韩清冰. 激光清洗过程低碳建模与工艺参数优化[J]. 机械工程学报, 2023, 59(7): 276-294. |
[6] | 李昕悦, 李健, 张健康, 林盼盼, 林铁松, 何鹏. AgCu28-B2O3钎料空气反应钎焊连接Al2O3陶瓷工艺及机理研究[J]. 机械工程学报, 2023, 59(10): 48-55. |
[7] | 陈玉田, 吴重军, 魏馨怡, 孟宪凯, 刘杰, 王琪冰. 微纳增材制造微圆柱结构的形貌分析与工艺优化研究[J]. 机械工程学报, 2023, 59(1): 286-297. |
[8] | 董兰兰, 李亘, 熊胤泽, 张航, 王蕾, 李祥. GelMA/LPN/MC水凝胶的挤出式3D打印工艺与性能研究[J]. 机械工程学报, 2022, 58(9): 283-290. |
[9] | 姜兴宇, 刘傲, 杨国哲, 刘伟军, 卞宏友, 索英祁. 激光增材制造过程低碳建模与工艺参数优化[J]. 机械工程学报, 2022, 58(5): 223-238. |
[10] | 郭飞, 汪汝健, 张云, 周华民, 李德群. 塑料注射成型工艺参数优化的模糊规则网络模型[J]. 机械工程学报, 2022, 58(20): 206-220. |
[11] | 吕岩, 徐正军, 李聪波, 李玲玲, 杨秒. 考虑扰动事件的机械加工工艺参数与车间动态调度综合节能优化[J]. 机械工程学报, 2022, 58(19): 242-255. |
[12] | 李永涛, 杨波, 木合塔尔·克力木. 液压系统流体脉动抑制方法综述[J]. 机械工程学报, 2022, 58(16): 344-359. |
[13] | 宋守许, 郁炯, 蔚辰, 张志旭. 考虑多辊修磨关系的轧辊主动再制造设计方法[J]. 机械工程学报, 2022, 58(13): 203-212. |
[14] | 谢小柱, 朱裔良, 黄亚军, 申超, 彭清发, 王鹏超, 龙江游. 飞秒激光无碎屑加工不锈钢血管支架[J]. 机械工程学报, 2021, 57(5): 251-261. |
[15] | 陈光, 刘见, 戈家影, 秦旭达, 邹云鹤, 任成祖. 基于运动学及力热分析的CFRP超声振动辅助螺旋铣孔质量影响机制[J]. 机械工程学报, 2021, 57(1): 199-209. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||