机械工程学报 ›› 2022, Vol. 58 ›› Issue (15): 2-20.doi: 10.3901/JME.2022.15.002
徐西鹏1,2, 黄辉1,3, 胡中伟1,2, 崔长彩1,4, 罗求发1,5, 廖信江2,3
收稿日期:
2022-04-05
修回日期:
2022-06-24
发布日期:
2022-10-13
通讯作者:
徐西鹏(通信作者),男,1965年出生,博士,教授,博士研究生导师。主要研究方向为超硬磨粒工具制备及应用、脆性材料高效精密加工。E-mail:xpxu@hqu.edu.cn
作者简介:
黄辉,男,1974年出生,博士、教授、博士研究生导师。主要研究方向为金刚石工具制备及应用、脆性材料高效精密加工。E-mail:huangh@hqu.edu.cn;胡中伟,男,1979年出生,博士,副教授,硕士研究生导师。主要研究方向为脆性材料高效精密磨削加工机理与工艺。E-mail:huzhongwei@hqu.edu.cn;崔长彩,女,1972年出生,博士,教授,博士研究生导师。主要研究方向为光学几何量精密测量技术与仪器、图像分析与处理、智能优化算法与应用。E-mail:cuichc@hqu.edu.cn;罗求发,男,1989年出生,博士,讲师。主要研究方向为光电材料超精密加工。E-mail:qfluo2014@hqu.edu.cn;廖信江,男,1991年出生,博士,讲师。主要研究方向为金刚石工具制备及应用。E-mail:xinjiangliao@sina.cn
基金资助:
XU Xipeng1,2, HUANG Hui1,3, HU Zhongwei1,2, CUI Changcai1,4, LUO Qiufa1,5, LIAO Xinjiang2,3
Received:
2022-04-05
Revised:
2022-06-24
Published:
2022-10-13
摘要: 磨粒加工技术的快速发展带动了磨粒工具技术的不断进步。发展高性能的磨粒工具对提高生产效率、提升加工精度有着重要的意义。从加工中磨粒工具的失效形式入手,分析了不同加工目标下磨粒与工件材料加工界面之间的力作用、温度作用、化学作用对磨粒工具失效的影响机制;概述了基于界面作用机理调控的磨粒工具设计及制造技术;归纳了现有磨粒工具的表面状态测量与评价技术;总结了磨粒工具使用过程中的界面作用调控技术;结合智能磨粒加工技术的发展对磨粒工具的未来趋势提出了展望。
中图分类号:
徐西鹏, 黄辉, 胡中伟, 崔长彩, 罗求发, 廖信江. 磨粒工具的研究现状及发展趋势[J]. 机械工程学报, 2022, 58(15): 2-20.
XU Xipeng, HUANG Hui, HU Zhongwei, CUI Changcai, LUO Qiufa, LIAO Xinjiang. Development of Abrasive Tools: State-of-the-art and Prospectives[J]. Journal of Mechanical Engineering, 2022, 58(15): 2-20.
[1] OLIVEIRA J F G, SILVA E J, GUO C, et al. Industrial challenges in grinding[J]. CIRP Annals, 2009, 58(2):663-680. [2] ZHU W, BEAUCAMP A. Compliant grinding and polishing:A review[J]. International Journal of Machine Tools and Manufacture, 2020, 158:103634. [3] 邓朝晖, 刘战强, 张晓红.高速高效加工领域科学技术发展研究[J].机械工程学报, 2010, 46(23):106-120.DENG Zhaohui, LIU Zhanqiang, ZHANG Xiaohong.Esearch of the science and technology development in high-speed and efficient processing field[J]. Journal of Mechanical Engineering, 2010, 46(23):106-120. [4] BRINKSMEIER E, MUTLUGüNES Y, KLOCKE F, et al. Ultra-precision grinding[J]. CIRP Annals, 2010, 59(2):652-671. [5] HASHIMOTO F, YAMAGUCHI H, KRAJNIK P, et al.Abrasive fine-finishing technology[J]. CIRP Annals, 2016, 65(2):597-620. [6] MALKIN S. Grinding technology:Theory and application of machining with abrasives[M]. New York:Industrial Press, 2008. [7] MALKIN S, GUO C. Thermal analysis of grinding[J].CIRP Annals-Manufacturing Technology, 2007, 56(2):760-782. [8] LINDSAY R P. The Effect of contact time on forces, wheel wear rate and G-ratio during internal and external grinding[J]. CIRP Annals, 1984, 33(1):193-197. [9] TöNSHOFF HK, HILLMANN-APMANN H, ASCHE J.Diamond tools in stone and civil engineering industry:Cutting principles, wear and applications[J]. Diamond and Related Materials, 2002, 11(3):736-741. [10] BULUT B, BAYDOGAN M, KAYALI ES. Effect of aluminium and silver addition on the wear characteristics of circular diamond saw blades for cutting Ankara andesite rocks[J]. Wear, 2021, 474-475:203867. [11] XU Xipeng, LI Yuan, ZENG Weiming, et al. Quantitative analysis of the loads acting on the abrasive grits in the diamond sawing of granites[J]. Journal of Materials Processing Technology, 2002, 129(1-3):50-55. [12] DING Wenfeng, ZHAO Biao, ZHANG Quanli, et al.Fabrication and wear characteristics of open-porous cBN abrasive wheels in grinding of Ti-6Al-4V alloys[J].Wear, 2021, 477:203786. [13] 陈珍珍, 徐九华, 丁文锋, 等.多孔复合结合剂立方氮化硼砂轮磨损特性[J].机械工程学报, 2014, 50(17):201-207.CHEN Zhenzhen, XU Jiuhua, DING Wenfeng, et al. Wear behavior of porous composite-bonded cbn a brasive wheels[J]. Journal of Mechanical Engineering, 2014, 50(17):201-207. [14] ZHAO Zhengcai, FU Yucan, XU Jiuhua, et al. Behavior and quantitative characterization of CBN wheel wear in high-speed grinding of nickel-based superalloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9-12):3545-3555. [15] KNOBLAUCH R, BOING D, WEINGAERTNER W L, et al. Investigation of the progressive wear of individual diamond grains in wire used to cut monocrystalline silicon[J]. Wear, 2018, 414:50-58. [16] 温雪龙, 巩亚东, 程军, 等.电镀金刚石微磨具磨损机理分析与试验研究[J].机械工程学报, 2015, 51(11):177-185.WEN Xuelong, GONG Yadong, CHENG Jun, et al.Mechanism analysis and experimental research on wear of electroplated diamond micro-grinding tool[J]. Journal of Mechanical Engineering, 2015, 51(11):177-185. [17] WANG Jingwei, YU Tianyu, DING Wenfeng, et al. Wear evolution and stress distribution of single CBN super abrasive grain in high-speed grinding[J]. Precision Engineering, 2018, 54:70-80. [18] 陈建毅.钎焊金刚石砂轮高速磨削工程陶瓷的基础研究[D].厦门:华侨大学, 2009.CHEN Jianyi. Fundamental Research on high speed grinding of engineering ceramics with brazed diamond wheels[D]. Xiamen:Huaqiao University, 2009. [19] HE Zhe, LI Jianyong, LIU Yueming, et al. Investigation on wear modes and mechanisms of abrasive belts in grinding of U71Mn steel[J]. The International Journal of Advanced Manufacturing Technology, 2018, 101(5-8):1821-1835. [20] XU Xipeng, YU Yiqing, HUANG Hui. Mechanisms of abrasive wear in the grinding of titanium(TC4) and nickel(K417) alloys[J]. Wear, 2003, 255(7-12):1421-1426. [21] LUO Qiufa, LU Jing, XU Xipeng. A comparative study on the material removal mechanisms of 6H-Si C polished by semi-fixed and fixed diamond abrasive tools[J]. Wear, 2016, 350-351:99-106. [22] PETRICA M, KATSICH C, BADISCH E, et al. Study of abrasive wear phenomena in dry and slurry 3-body conditions[J]. Tribology International, 2013, 64:196-203. [23] WU Haiyong, HUANG Hui, JIANG Feng, et al.Mechanical wear of different crystallographic orientations for single abrasive diamond scratching on Ta12W[J].International Journal of Refractory Metals and Hard Materials, 2016, 54:260-269. [24] 李远.花岗石超大切深锯切机理与技术研究[D].厦门:华侨大学, 2004.LI Yuan. Mechanisms and techniques for deep sawing of granite[D]. Xiamen:Huaqiao University, 2004. [25] MUKHOPADHYAY P, RAGHAVA SIMHAN D R, GHOSH A. Challenges in brazing large synthetic diamond grit by Ni-based filler alloy[J]. Journal of Materials Processing Technology, 2017, 250:390-400. [26] LI Yuan, HUANG Hui, SHEN Jianyun, et al.Cost-effective machining of granite by reducing tribological interactions[J]. Journal of Materials Processing Technology, 2002, 129(1-3):389-394. [27] 黄辉, 黄国钦, 郭桦, 等.锯切花岗石过程中金刚石串珠的磨损特性[J].机械工程学报, 2008, 44(8):112-117.HUANG Hui, HUANG Guoqin, GUO Hua, et al. Wear characteristics of diamond beads in wire sawing granite[J].Journal of Mechanical Engineering, 2008, 44(8):112-117. [28] SUN Baojun, JIANG Chengjie, ZONG Fule. Performance and wear of brazing diamond grinding disc in machining gray cast iron[J]. Diamond and Related Materials, 2020, 106:107820. [29] BUSHLYA V, LENRICK F, BJERKE A, et al. Tool wear mechanisms of PcBN in machining Inconel 718:Analysis across multiple length scale[J]. CIRP Annals, 2021, 70(1):73-78. [30] 陈春晖, 陈哲, 刘一波, 等.改性酚醛树脂对树脂结合剂砂轮胎体性能的影响[J].金刚石与磨料磨具工程, 2020, 40(4):93-97.CHEN Chunhui, CHEN Zhe, LIU Yibo, et al. Effect of modified phenolic resin on performance of resin bond for super hard wheel[J]. Diamond&Abrasives Engineering, 2020, 40(4):93-97. [31] 冯克明, 邢波, 师超钰, 等.树脂结合剂超硬磨料砂轮磨削稳定性试验研究[J].兵工学报, 2018, 39(7):1389-1396.FENG Keming, XING Bo, SHI Chaoyu, et al.Experimental study on grinding stability of super abrasive grinding wheel for resin bond[J]. Acta Armamentarii, 2018, 39(7):1389-1396. [32] 徐西鹏, 刘娟, 于怡青, 等.凝胶结合剂磨粒工具制备及其磨抛性能研究[J].机械工程学报, 2013, 49(19):156-162.XU Xipeng, LIU Juan, YU Yiqing, et al. Fabrication and application of gel-bonded abrasive'tools for grinding and polishing tools[J]. Journal of Mechanical Engineering, 2013, 49(19):156-162. [33] RAO Zhiwen, XIAO Guodong, ZHAO Biao, et al. Effect of wear behaviour of single mono-and poly-crystalline c BN grains on the grinding performance of Inconel 718[J].Ceramics International, 2021, 47(12):17049-17056. [34] 阎秋生, 庄司克雄, 田中宪司.金属结合层包覆单列磨粒小直径CBN砂轮端面磨削过程研究[J].机械工程学报, 2005, 41(8):208-212.YAN Qiusheng, SYOJI K, TANAKA K. Studies on face grinding process of metal layer bond wrapped monorail grit cup CBN quill[J]. Journal of Mechanical Engineering, 2005, 41(8):208-212. [35] CHEN Jiajia, FU Yucan, QIAN Ning, et al. A study on thermal performance of revolving heat pipe grinding wheel[J]. Applied Thermal Engineering, 2021, 182:116065. [36] CHEN Zhenzhen, XU Jiuhua, DING Wenfeng, et al.Grinding temperature during high-efficiency grinding Inconel 718 using porous CBN wheel with multilayer defined grain distribution[J]. The International Journal of Advanced Manufacturing Technology, 2014, 77(1-4):165-172. [37] JIANG Guo, ZHANG Jianguo, PAN Yanan, et al. A critical review on the chemical wear and wear suppression of diamond tools in diamond cutting of ferrous metals[J].International Journal of Extreme Manufacturing, 2020, 2(1):012001. [38] FURUSHIRO N, TANAKA H, HIGUCHI M, et al.Suppression mechanism of tool wear by phosphorous addition in diamond turning of electroless nickel deposits[J]. CIRP Annals, 2010, 59(1):105-108. [39] OLIVEIRA J F G, ALVES S M. Development of environmentally friendly fluid for cBN grinding[J]. CIRP Annals, 2006, 55(1):343-346. [40] CHEN C C A, SHU L S, LEE S R. Mechano-chemical polishing of silicon wafers[J]. Journal of Materials Processing Technology, 2003, 140(1-3):373-378. [41] HUANG H, WANG B L, WANG Y, et al. Characteristics of silicon substrates fabricated using nanogrinding and chemo-mechanical-grinding[J]. Materials Science and Engineering:A, 2008, 479(1-2):373-379. [42] XU Yongchao, LU Jing, XU Xipeng. Study on planarization machining of sapphire wafer with soft-hard mixed abrasive through mechanical chemical polishing[J].Applied Surface Science, 2016, 389:713-720. [43] JACKSON M J. Modelling of fracture wear in vitrified cBN grinding wheels[J]. Journal of Achievements in Materials&Manufacturing Engineering, 2007, 24(1):230-236. [44] SUH C M, BAE K S, SUH M S. Wear behavior of diamond wheel for grinding optical connector ferrule-FEA and wear test-[J]. Journal of Mechanical Science and Technology, 2009, 22(11):2009-2015. [45] DING Wenfeng, ZHU Yejun, XU Jiuhua, et al. Finite element investigation on the evolution of wear and stresses in brazed CBN grits during grinding[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(5-8):985-993. [46] NOUARI M, IORDANOFF I. Effect of the third-body particles on the tool-chip contact and tool-wear behaviour during dry cutting of aeronautical titanium alloys[J]. Tribology International, 2007, 40(9):1351-1359. [47] 张聪, 谭援强, 姜胜强, 等.金刚石锯片胎体与大理石摩擦磨损的离散元模拟研究[J].金刚石与磨料磨具工程, 2017, 37(4):15-21.ZHANG Cong, TAN Yuanqiang, JIANG Shengqiang, et al. Discrete element simulation study on the friction and wear between matrix of diamond saw blade and marble[J].Diamond&Abrasives Engineering, 2017, 37(4):15-21. [48] 郭晓光, 郭东明, 康仁科, 等.单晶硅纳米级磨削过程中磨粒磨损的分子动力学仿真[J].半导体学报, 2008, 29(6):1180-1183.GUO Xiaoguang, GUO Dongming, KANG Renke, et al.Study of abrasive wear in monocrystal silicon grinding with molecular dynamic simulation[J]. Journal of Semiconductor, 2008, 29(6):1180-1183. [49] FUNG K Y, TANG C Y, CHEUNG C F. Molecular dynamics analysis of the effect of surface flaws of diamond tools on tool wear in nanometric cutting[J].Computational Materials Science, 2017, 133:60-70. [50] ZHOU Piao, SUN Tao, SHI Xunda, et al. Atomic-scale study of vacancy defects in SiC affecting on removal mechanisms during nano-abrasion process[J]. Tribology International, 2020, 145:106136. [51] GOEL S, LUO Xichun, REUBEN R L. Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process[J]. Tribology International, 2013, 57:272-281. [52] ZOU Lai, YIN Jiachao, HUANG Yun, et al. Essential causes for tool wear of single crystal diamond in ultra-precision cutting of ferrous metals[J]. Diamond and Related Materials, 2018, 86:29-40. [53] FILLOT N, IORDANOFF I, BERTHIER Y. Modelling third body flows with a discrete element method-a tool for understanding wear with adhesive particles[J].Tribology International, 2007, 40(6):973-981. [54] LI Haonan, YU Tianbiao, ZHU Lida, et al. Modeling and simulation of grinding wheel by discrete element method and experimental validation[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(9-12):1921-1938. [55] YAMAZAKI T, SUZUMURA A. Relationship between X-ray diffraction and unidirectional solidification at interface between diamond and brazing filler metal[J].Journal of Materials Science, 2000, 35(24):6155-6160. [56] HUANG Guoqin, HUANG Jierong, ZHANG Meiqin, et al. Fundamental aspects of ultrasonic assisted induction brazing of diamond onto 1045 steel[J]. Journal of Materials Processing Technology, 2018, 260:123-136. [57] XIA Pei, JIANG Rongrong, LI Zhihong, et al. Effect of Y2O3 on the properties of vitrified bond and vitrified diamond composites[J]. Composites Part B:Engineering, 2014, 67:515-520. [58] WANG Rui, ZHANG Jianhua, CHEN Shaoyun, et al.Green fabrication of graphene oxide/epoxy nanocomposite and its application in diamond abrasive tools[J]. Composites Part B:Engineering, 2019, 177:107383. [59] SUNG JC, SUNG M. The brazing of diamond[J].International Journal of Refractory Metals and Hard Materials, 2009, 27(2):382-393. [60] 李颖颖.铁基合金对金刚石的泡沫化腐蚀及应用研究[D].长沙:湖南大学, 2017.LI Yingying. Study on foaming corrosion and application of diamond by iron-based alloy powder[D]. Changsha:Hunan University, 2017. [61] XU Xipeng, TIE Xiaorui, YU Yiqing. The effects of rare earth on the fracture properties of different metal-diamond composites[J]. Journal of Materials Processing Technology, 2007, 187:421-424. [62] CHATTOPADHYAY A K, CHOLLET L, HINTERMANN H E. On performance of brazed bonded monolayer diamond grinding wheel[J]. CIRP Annals, 1991, 40(1):347-350. [63] HINTERMANN H E, CHATTOPADHYAY A K. New generation super abrasive tool with monolayer configuration[J]. Diamond and Related Materials, 1992, 1(12):1131-1143. [64] CHEN Jinchang, MU Dekui, LIAO Xinjiang, et al.Interfacial microstructure and mechanical properties of synthetic diamond brazed by Ni-Cr-P filler alloy[J].International Journal of Refractory Metals and Hard Materials, 2018, 74:52-60. [65] KHALID F A, KLOTZ U E, ELSENER H R, et al. On the interfacial nanostructure of brazed diamond grits[J].Scripta Materialia, 2004, 50(8):1139-1143. [66] HUANG S F, TSAI H L, LIN S T. Effects of brazing route and brazing alloy on the interfacial structure between diamond and bonding matrix[J]. Materials Chemistry and Physics, 2004, 84(2):251-258. [67] ZHU W J, WANG J, LIU L B, et al. Modeling and simulation of the TiC reaction layer growth during active brazing of diamond using DICTRA[J]. Computational Materials Science, 2013, 78:74-82. [68] MIAO Qing, DING Wenfeng, ZHU Yejun, et al. Brazing of CBN grains with Ag-Cu-Ti/TiX composite filler-The effect of TiX particles on microstructure and strength of bonding layer[J]. Materials&Design, 2016, 98:243-253. [69] LIAO Xinjiang, MU Dekui, WANG Jianxin, et al.Formation of TiC via interface reaction between diamond grits and Sn-Ti alloys at relatively low temperatures[J].International Journal of Refractory Metals and Hard Materials, 2017, 66:252-257. [70] DING Wenfeng, XU Jiuhua, SHEN Min, et al. Joining of CBN abrasive grains to medium carbon steel with AgCu/Ti powder mixture as active brazing alloy[J].Materials Science and Engineering:A, 2006, 430(1-2):301-306. [71] ZHANG Jian, XU Qi, HU Yongle, et al. Interfacial bonding mechanism and adhesive transfer of brazed diamond with Ni-based filler alloy:First-principles and experimental perspective[J]. Carbon, 2019, 153:104-115. [72] BURKHARD G, REHSTEINER F, SCHUMACHER B.High efficiency abrasive tool for honing[J]. CIRP Annals, 2002, 51(1):271-274. [73] AURICH J C, HERZENSTIEL P, SUDERMANN H, et al. High-performance dry grinding using a grinding wheel with a defined grain pattern[J]. CIRP Annals, 2008, 57(1):357-362. [74] YU Haiyue, LYU Yushan, WANG Jun, et al. A biomimetic engineered grinding wheel inspired by phyllotaxis theory[J]. Journal of Materials Processing Technology, 2018, 251:267-281. [75] ZHANG Yuzhou, FANG Congfu, HUANG Guoqin, et al.Modeling and simulation of the distribution of undeformed chip thicknesses in surface grinding[J].International Journal of Machine Tools and Manufacture, 2018, 127:14-27. [76] LI Haonan, AXINTE D. Textured grinding wheels:A review[J]. International Journal of Machine Tools and Manufacture, 2016, 109:8-35. [77] DING Wenfeng, DAI Chenwei, YU Tianyu, et al.Grinding performance of textured monolayer CBN wheels:Undeformed chip thickness nonuniformity modeling and ground surface topography prediction[J].International Journal of Machine Tools and Manufacture, 2017, 122:52-66. [78] LU Jing, LI Yang, XU Xipeng. The effects of abrasive yielding on the polishing of SiC wafers using a semi-fixed flexible pad[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2015, 229(1_suppl):170-177. [79] 袁巨龙, 邵琦, 吕冰海, 等.基于流变原理的柔性接触抛光材料去除模型综述[J].机械工程学报, 2020, 56(3):169-180.YUAN Julong, SHAO Qi, LÜBinghai, et al. Review on material removal model of flexible contact polishing based on rheological principle[J]. Journal of Mechanical Engineering, 2020, 56(3):169-180. [80] 李敏, 袁巨龙, 吴喆, 等.复杂曲面零件超精密加工方法的研究进展[J].机械工程学报, 2015, 51(5):178-191.LI Min, YUAN Julong, WU Zhe, et al. Progress in ultra-precision machining methods of complex curved parts[J]. Journal of Mechanical Engineering, 2015, 51(5):178-191. [81] MALKIN S. Current trends in c BN grinding technology[J]. CIRP Annals, 1985, 34(2):557-563. [82] FANG Congfu, YAN Zhen, DENG Wenwen, et al.Material removal in grinding sapphire wafers with brazeddiamond pellet plates[J]. Materials&Manufacturing Processes, 2019, 34(7):791-799. [83] CHEN Jiajia, FU Yucan, LI Qilin, et al. Investigation on induction brazing of revolving heat pipe grinding wheel[J].Materials&Design, 2017, 116:21-30. [84] QIAN Ning, FU Yucan, ZHANG Yuwen, et al.Experimental investigation of thermal performance of the oscillating heat pipe for the grinding wheel[J].International Journal of Heat and Mass Transfer, 2019, 136:911-923. [85] 傅玉灿, 田霖, 徐九华, 等.磨削过程建模与仿真研究现状[J].机械工程学报, 2015, 51(7):197-205.FU Yucan, TIAN Lin, XU Jiuhua, et al. Development and application on the grinding process modeling and simulation[J]. Journal of Mechanical Engineering, 2015, 51(7):197-205. [86] 彭锐涛, 刘开发, 黄晓芳, 等.流道结构对加压内冷却开槽砂轮磨削性能的影响[J].机械工程学报, 2019, 55(13):212-223.PENG Ruitao LIU Kaifa, HUANG Xiaofang, et al. Effect of flow channel structure on performance of pressurized internal-cooling slotted grinding wheels[J]. Journal of Mechanical Engineering, 2019, 55(13):212-223. [87] DING Wenfeng, MIAO Qing, XU Jiuhua, et al.Preparation mechanism and grinding performance of single-layer self-lubrication brazed CBN abrasive wheels[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(1-4):249-255. [88] 吕涛, 黄水泉, 易芳, 等.液体润滑剂/β-环糊精包合物为填料的酚醛树脂砂轮自润滑性能研究[J].机械工程学报, 2017, 53(17):160-171.LÜTao, HUANG Shuiquan, YI Fang, et al.Self-lubrication performance of phenolic resin-bonded grinding wheel filled with inclusion complex of b-cyclodextrin and liquid lubricants[J]. Journal of Mechanical Engineering, 2017, 53(17):160-171. [89] 任莹晖, 周家恒, 李伟, 等.化学机械磨削技术研究现状与展望[J].中国机械工程, 2021, 32(18):2143-2152.REN Yinghui, ZHOU Jiaheng, LI Wei, et al. Research status and prospect of chemo-mechanical grinding technology[J]. China Mechanical Engineering, 2021, 32(18):2143-2152. [90] MENG Fanning, ZHANG Zhenyu, GAO Peili, et al.Design of composite abrasives and substrate materials for chemical mechanical polishing applications[J]. Applied Nanoscience, 2020, 10(5):1379-1393. [91] 苏宏华, 徐鸿钧, 傅玉灿, 等.多层烧结超硬磨料工具现状综述与未来发展构想[J].机械工程学报, 2005, 41(3):12-17.SU Honghua, XU Hongjun, FU Yucan, et al. Review the current questions and strategies about multilayer sintering super abrasive tools and conceive the development of future tools[J]. Journal of Mechanical Engineering, 2005, 41(3):12-17. [92] 宋健民.以渗透法硬焊的钻石研磨工具:中国, 98803985.0[P]. 2003-09-10.SONG Jianmin. Brazed diamond tools by infiltration:China, 98803985.0[P]. 2003-09-10. [93] QIU Yanfei, HUANG Hui. Research on the fabrication and grinding performance of 3-dimensional controllable abrasive arrangement wheels[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5-8):1839-1853. [94] DEJA M, ZIELINSKI D, KADIR A Z A, et al.Applications of additively manufactured tools in abrasive machining-A literature review[J]. Materials(Basel), 2021, 14(5):1318. [95] TANAKA T, ISONO Y. New development of a grinding wheel with resin cured by ultraviolet light[J]. Journal of Materials Processing Technology, 2001, 113(1):385-391. [96] TIAN Chenchen, LI Xuekun, ZHANG Shubo, et al. Study on design and performance of metal-bonded diamond grinding wheels fabricated by selective laser melting(SLM)[J]. Materials&Design, 2018, 156:52-61. [97] LI Xuekun, WANG Chao, TIAN Chenchen, et al. Digital design and performance evaluation of porous metal-bonded grinding wheels based on minimal surface and 3D printing[J]. Materials&Design, 2021, 203:109556. [98] KEMPF F, DENKENA B, KROEDEL A, et al. Additive manufacturing of metal-bonded grinding tools[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(5-6):2387-2395. [99] GAN Jie, GAO Hui, WEN Shifeng, et al. Simulation, forming process and mechanical property of Cu-Sn-Ti/diamond composites fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2020, 87:105144. [100] SPIERINGS AB, LEINENBACH C, KENEL C, et al.Processing of metal-diamond-composites using selective laser melting[J]. Rapid Prototyping Journal, 2015, 21(2):130-136. [101] PENG Yingbo, KONG Yi, ZHANG Wei, et al. Effect of diffusion barrier and interfacial strengthening on the interface behavior between high entropy alloy and diamond[J]. Journal of Alloys and Compounds, 2021, 852:157023 [102] YANG Zhibo, ZHANG Mingjun, ZHANG Zhen, et al.A study on diamond grinding wheels with regular grain distribution using additive manufacturing(AM) technology[J]. Materials&Design, 2016, 104:292-297. [103] RAHMANI R, BROJAN M, ANTONOV M, et al.Perspectives of metal-diamond composites additive manufacturing using SLM-SPS and other techniques for increased wear-impact resistance[J]. International Journal of Refractory Metals and Hard Materials, 2020, 88:105192. [104] WEGNER J, FEHR A, PLATT S, et al.Diamond-impregnated 316L metal matrix composites fabricated by powder bed fusion with laser beamInfluences of the energy input on the microstructural properties[J]. Diamond and Related Materials, 2020, 109:108040. [105] DU Zhijun, ZHANG Fenglin, XU Qiongsheng, et al.Selective laser sintering and grinding performance of resin bond diamond grinding wheels with arrayed internal cooling holes[J]. Ceramics International, 2019, 45(16):20873-20881. [106] QIU Yanfei, HUANG Hui, XU Xipeng. Effect of additive particles on the performance of ultraviolet-cured resin-bond grinding wheels fabricated using additive manufacturing technology[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(9-12):3873-3882. [107] BENTLEY J L, WILLIAMS W B, PFAFF M. Additive manufacturing of tools for lapping glass[M].International Society for Optics and Photonics, 2013. [108] GUO Lei, ZHANG Xinrong, CHEN Shibin, et al. An Experimental Study on the precision abrasive machining process of hard and brittle materials with ultraviolet-resin bond diamond abrasive tools[J].Materials(Basel), 2019, 12(1):125. [109] TIAN Chenchen, LI Xueken, ZHANG Shubo, et al.Porous structure design and fabrication of metal-bonded diamond grinding wheel based on selective laser melting(SLM)[J]. The International Journal of Advanced Manufacturing Technology, 2018, 100(5-8):1451-1462. [110] NGUYEN A T, BUTLER D L. Correlation of grinding wheel topography and grinding performance:A study from a viewpoint of three-dimensional surface characterisation[J]. Journal of Materials Processing Technology, 2008, 208(1-3):14-23. [111] BLUNT L, EBDON S. The application of threedimensional surface measurement techniques to characterizing grinding wheel topography[J].International Journal of Machine Tools and Manufacture, 1996, 36(11):1207-1226. [112] XIE J, XU J, TANG Y, et al. 3D graphical evaluation of micron-scale protrusion topography of diamond grinding wheel[J]. International Journal of Machine Tools and Manufacture, 2008, 48(11):1254-1260. [113] 龚俊锋, 徐西鹏.基于聚焦合成的砂轮表面三维重构方法[J].金刚石与磨料磨具工程, 2006(4):14-26.GONG Junfeng, XU Xipeng. 3-D surface reconstruction of grinding wheel topography based on depth from focus[J]. Diamond&Abrasives Engineering, 2006(4):14-16. [114] CUI Changcai, XU Xipeng, HUANG Hui, et al.Extraction of the grains topography from grinding wheels[J]. Measurement, 2013, 46(1):484-490. [115] 霍凤伟, 郭东明, 金洙吉, 等.细粒度金刚石砂轮形貌测量与评价[J].机械工程学报, 2007, 43(10):108-113.HUO Fengwei, GUO Dongming, JIN Zhuji, et al.Measurement and evaluation of the surface topography of fine diamond grinding wheel[J]. Journal of Mechanical Engineering, 2007, 43(10):108-113. [116] KIM SH, AHN JH. Decision of dressing interval and depth by the direct measurement of the grinding wheel surface[J]. Journal of Materials Processing Technology, 1999, 88(1):190-194. [117] DARAFON A, WARKENTIN A, BAUER R.Characterization of grinding wheel topography using a white chromatic sensor[J]. International Journal of Machine Tools&Manufacture, 2013, 70:22-31. [118] 崔长彩, 王克贤, 黄国钦, 等.单层钎焊金刚石砂轮表面磨粒全场快速测量[J].中国机械工程, 2019, 30(14):1639-1645.CUI Changcai, WANG Kexian, HUANG Guoqin, et al.Fast measurement of abrasive grains on a single layer brazed diamond grinding wheel surface[J]. China Mechanical Engineering, 2019, 30(14):1639-1645. [119] CHEN Junying, CUI Changcai, HUANG Guoqin, et al.A new strategy for measuring the grain height uniformity of a grinding wheel[J]. Measurement, 2020, 151:107250. [120] CHEN Junying, CUI Changcai, HUANG Guoqin, et al.Characterization of grain geometrical features for monolayer brazed grinding wheels based on grain cross-sections[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1-4):1425-1436. [121] KACALAK W, LIPIŃSKI D, SZAFRANIEC F, et al.Metrological basis for assessing the state of the active surface of abrasive tools based on parameters characterizing their machining potential[J].Measurement, 2020, 165:108068. [122] FUJIMOTO M, ICHIDA Y. Micro fracture behavior of cutting edges in grinding using single crystal cBN grains[J]. Diamond and Related Materials, 2008, 17(7-10):1759-1763. [123] YE Ruifang, JIANG Xiangqian, BLUNT Liam, et al.The application of 3D-motif analysis to characterize diamond grinding wheel topography[J]. Measurement, 2016, 77:73-79. [124] DARIUSZ L, WOJCIECH K. Metrological aspects of abrasive tool active surface topography evaluation[J].Metrology&Measurement Systems, 2016, 23(4):567-577. [125] PAGANI Lucai, QI Qunfen, LU Jing, et al..Characterisation of diamond abrasive grains of grinding tools using industrial X-ray computed tomography[J].The International Journal of Advanced Manufacturing Technology, 2021, 112(1):1-16. [126] DAI Chenwei, DING Wengfeng, XU Jiuhua, et al.Effects of undeformed chip thickness on grinding temperature and burn-out in high-efficiency deep grinding of Inconel 718 superalloys[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(5-8):1841-1852. [127] HUANG H, LIU Y C. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding[J].International Journal of Machine Tools&Manufacture, 2003, 43(8):811-823. [128] LAI Z, HU Z, FANG C, et al. Study on the wear characteristics of a lapping wheel in double-sided lapping based on the trajectory distribution[J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(3):352-358. [129] YANG Zhichao, ZHU Lida, ZHANG Guixiang, et al.Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tools and Manufacture, 2020, 156:103594. [130] YOU Kaiyuan, YAN Guangpeng, LUO Xichun, et al.Advances in laser assisted machining of hard and brittle materials[J]. Journal of Manufacturing Processes, 2020, 58:677-692. [131] ZADAFIYA K, BANDHU D, KUMARI S, et al. Recent trends in non-traditional machining of shape memory alloys(SMAs):A review[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 32(6):217-227. [132] CHEN Yue, HU Zhongwei, JIN Jianfeng, et al.Molecular dynamics simulations of scratching characteristics in vibration-assisted nano-scratch of single-crystal silicon[J]. Applied Surface Science, 2021, 551:14945. [133] YANG Zhicao, ZHU Lida, LIN Bin, et al. The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding[J].Ceramics International, 2019, 45(7, Part A):8873-8889. [134] NI Jing, YANG Yongfeng, WU Can. Assessment of water-based fluids with additives in grinding disc cutting process[J]. Journal of Cleaner Production, 2019, 212:593-601. [135] WU Wentao, LI Changhe, YANG Min, et al. Specific energy and g ratio of grinding cemented carbide under different cooling and lubrication conditions[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1-4):67-82. [136] ZHANG Yanbin, LI Changhe, JIA Dongzhou, et al.Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding[J]. International Journal of Machine Tools and Manufacture, 2015, 99:19-33. [137] XU Yongchao, LU Jing, XU Xipeng, et al. Study on high efficient sapphire wafer processing by coupling SG-mechanical polishing and GLA-CMP[J].International Journal of Machine Tools and Manufacture, 2018, 130:12-19. [138] DENG Hui, XU Zhou. Dressing methods of superabrasive grinding wheels:A review[J]. Journal of Manufacturing Processes, 2019, 45:46-69. [139] 焦锋, 李成龙, 牛赢, 等.砂轮修整技术研究现状与展望[J].中国机械工程, 2021, 32(30):2435-2448.JIAO Feng, LI Chenglong, NIU Ying, et al. Review and prospect of grinding wheel dressing technique[J]. China Mechanical Engineering, 2021, 32(30):2435-2448. [140] MUKHOPADHYAY M, KUNDU P K, CHATTERJEE S, et al. Impact of dressing infeed on SiC wheel for grinding Ti-6Al-4V[J]. Materials and Manufacturing Processes, 2018, 34(1):54-60. [141] HOLESOVSKY F, PAN B, MORGAN M N, et al.Evaluation of diamond dressing effect on workpiece surface roughness by way of analysis of variance[J].Tehnicki vjesnik-Technical Gazette, 2018, 25(Supplement 1):165-169. [142] DENG Hui, ZHOU Xu. Laser-dressing topography and quality of resin-bonded diamond grinding wheels[J].Optics and Lasers in Engineering, 2021, 136:106322. [143] ZHANG CH, SHIN Y C. Wear of diamond dresser in laser assisted truing and dressing of vitrified CBN wheels[J]. International Journal of Machine Tools&Manufacture, 2003, 43(1):41-49. [144] YANG Zhibo, ZHANG Shiyu, ZHANG Zhen, et al.Experimental research on laser-ultrasonic vibration synergic dressing of diamond wheel[J]. Journal of Materials Processing Technology, 2019, 269:182-189. [145] XU M M, LI D D, HU D J, et al. Laminated manufacturing and milling electrical discharge dressing of metal-bonded diamond grinding wheels[J].Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2011, 226(1):137-144. [146] 余剑武, 何利华, 黄帅, 等.电火花修整超硬磨料砂轮技术发展现状[J].中国机械工程, 2015, 16(16):2254-62.YU Jianwu, HE Lihua, HUANG Shuai, et al.State-of-the-art of electrical discharge dressing technology for super abrasive grinding wheel[J]. China Mechanical Engineering, 2015, 26(16):2254-2262. [147] OHMORI H, NAKAGAWA T. Mirror surface grinding of silicon wafers with electrolytic in-process dressing[J].CIRP Annals, 1990, 39(1):329-332. [148] MA Fei, HUANG Hui. Experimental research on the biological in-process dressing(BID) of Cu-Co matrix diamond tools[J]. Journal of Cleaner Production, 2020, 275:124070. |
[1] | 张鹏, 赵鑫, 凌亮, 陶功权, 温泽峰. 轮轨高频动力作用模拟中接触模型的影响分析[J]. 机械工程学报, 2020, 56(12): 124-132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||