[1] LAI Leijie, ZHU Zina. Design, modeling and testing of a novel flexure-based displacement amplification mechanism[J]. Sensors & Actuators:A. Physical, 2017, 266:122-129. [2] QI Keqi, XIANG Yang, FANG Chao, et al. Analysis of the displacement amplification ratio of bridge-type mechanism[J]. Mechanism and Machine Theory, 2015, 87:45-56. [3] XU De, LI Fudong, ZHANG Zhengtao, et al. Characteristic of monocular microscope vision and its application on assembly of micro-pipe and micro-sphere[C]//Proceedings of the 32nd Chinese Control Conference. Xi'an:32nd Chinese Control Conference, 2013:5758-5763. [4] DONG Wei, CHEN Fangxin, YANG Miao, et al. Development of a highly efficient bridge-type mechanism based on negative stiffness[J]. Smart Materials and Structures, 2017, 26(9):095053. [5] CHEN Weilin, ZHANG Xianmin, FATIKOW Sergej. Design, modeling and test of a novel compliant orthogonal displacement amplification mechanism for the compact micro-grasping system[J]. Microsystem Technologies, 2017, 23(7):2485-2498. [6] LU Qian, HUANG Weiqing, SUN Mengxin. The optimization design of lever type flexible hinge amplification mechanism based on compliance ratio[J]. Optical Precision Engineering, 2016, 24(1):102-111. 卢倩, 黄卫清, 孙梦馨. 基于柔度比优化设计杠杆式柔性铰链放大机构[J]. 光学精密工程, 2016, 24(1):102-111. [7] LIU Min, ZHANG Xianmin. Micro displacement amplification mechanism based on type V flexure hinge[J]. Optical Precision Engineering, 2017, 25(4):467-476. 刘敏, 张宪民. 基于类Ⅴ型柔性铰链的微位移放大机构[J]. 光学精密工程, 2017, 25(4):467-476. [8] LOBONTIU N, GARCIA E. Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms[J]. Computers and Structures, 2003, 81(32):2797-2810. [9] MA Hongwen, YAO Shaoming, WANG Liquan, et al. Analysis of the displacement amplification ratio of bridge-type flexure hinge[J]. Sensors & Actuators:A-Physical, 2005, 132(2):730-736. [10] QI Keqi, XIANG Yang, FANG Chao, et al. Analysis of the displacement amplification ratio of bridge-type mechanism[J]. Mechanism and Machine Theory, 2015, 87:45-56. [11] LING Mingxiang, LIU Qian, CAO Junyi, et al. Mechanical analytical model and finite element analysis of piezoelectric displacement amplification mechanism[J]. Optical Precision Engineering, 2016, 24(4):812-818. 凌明祥, 刘谦, 曹军义, 等. 压电位移放大机构的力学解析模型及有限元分析[J]. 光学精密工程, 2016, 24(4):812-818. [12] LIU Pengbo, YAN Peng. A new model analysis approach for bridge-type amplifiers supporting nano-stage design[J]. Mechanism and Machine Theory, 2016, 99:176-188. [13] WEI Huaxian, SHIRINZADEH Bijan, LI Wei, et al. Development of piezo-driven compliant bridge mechanisms:General analytical equations and optimization of displacement amplification[J]. Micromachines, 2017, 8(8):238. [14] KIM J, KIM S, KWAK Y. Development and optimization of 3-D bridge-type hinge mechanisms[J]. Sensors and Actuators, A. Physical, 2004, 116(3):530-538. [15] XU Qingsong, LI Yangmin. Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier[J]. Mechanism and Machine Theory, 2011, 46(2):183-200. [16] LING Mingxiang. A general two-port dynamic stiffness model and static/dynamic comparison for three bridge-type flexure displacement amplifiers[J]. Mechanical Systems and Signal Processing, 2019, 119(15):486-500. [17] LAI Leijie, MEI Junhua, ZHU Zina. Study on static and dynamic performance of bridge displacement amplification mechanism with distributed compliance[J]. Piezoelectricity And Sound And Light, 2018, 40(2):251-256. 赖磊捷, 梅峻华, 朱姿娜. 分布柔度桥式位移放大机构静动力学性能研究[J]. 压电与声光, 2018, 40(2):251-256. [18] CHEN Weilin, LU Qinghua, QIAO Jian, et al. Nonlinear modeling and optimization of compliant bridge displacement amplification mechanism[J]. Optical Precision Engineering, 2019, 27(4):849-859. 陈为林, 卢清华, 乔健, 等. 柔顺桥式位移放大机构的非线性建模与优化[J]. 光学精密工程, 2019, 27(4):849-859. [19] LOBONTIU N. Compliant mechanisms:Design of flexure hinges[M]. CRC Press, 2020. [20] CHEN Fangxin, GAO Futian, DU Zhijiang, et al. Modeling, analysis and test of 3d bridge amplification mechanism based on hybrid hinge[J]. Journal of Mechanical Engineering, 2018, 54(13):110-116. 陈方鑫, 高福天, 杜志江, 等. 基于混合铰链的三维桥式放大机构的建模、分析与试验[J]. 机械工程学报, 2018, 54(13):110-116. [21] CHEN Weilin, LU Qinghua, KONG Chuiwang, et al. Design, analysis and validation of the bridge-type displacement amplification mechanism with circular-axis leaf-type flexure hinges for micro-grasping system[J]. Microsystem Technologies, 2019, 25(3):1121-1128. [22] YANG Chunhui, LIU Pingan. Design and calculation of flexibility of circular arc flexible ball joints[J]. Journal of Engineering Design, 2014, 21(4):389-392. 杨春辉, 刘平安. 圆弧型柔性球铰柔度设计计算[J]. 工程设计学报, 2014, 21(4):389-392. [23] LOBONTIU N, PAINE J S N, GARCIA E, et al. Corner-filleted flexure hinges[J]. Journal of Mechanical Design, 2001, 123(3):346-352. [24] SMITH S T, BADAMI V G, DALE J S, et al. Elliptical flexure hinges[J]. Review of Scientific Instruments, 1997, 68(3):1474-1483. [25] LOBONTIU N, PAINE J S N, O'MALLEY E, et al. Parabolic and hyperbolic flexure hinges:Flexibility, motion precision and stress characterization based on compliance closed-form equations[J]. Precision Engineering, 2002, 26(2):183-192. [26] WANG Nianfeng, LIANG Xiaohe, ZHANG Xianmin. Pseudo-rigid-body model for corrugated cantilever beam used in compliant mechanisms[J]. Chinese Journal of Mechanical Engineering, 2014, 27(1):122-129. [27] YANG Miao, DU Zhijiang, CHEN Yi, et al. Mechanical modeling and deformation characteristics analysis of cross spring flexure hinge with variable section[J]. Journal of Mechanical Engineering, 2018, 54(13):73-78. 杨淼, 杜志江, 陈依, 等. 变截面交叉簧片柔性铰链的力学建模与变形特性分析[J]. 机械工程学报, 2018, 54(13):73-78. [28] LIU Min, ZHANG Xianmin, FATIKOW Sergej. Design and analysis of a high-accuracy flexure hinge[J]. Review of Scientific Instruments, 2016, 87(5):55101-55106. [29] QIU Lifang, CHEN Haixiang, WU Youwei. Topology design and compliance analysis of a novel uniaxial flexure hinge[J]. Journal of Beijing University Of Aeronautics And Astronsutics, 2018, 44(6):1133-1140. 邱丽芳, 陈海翔, 吴友炜. 新型单轴柔性铰链拓扑结构设计与柔度分析[J]. 北京航空航天大学学报, 2018, 44(6):1133-1140. [30] ZHOU M, ROZVANY G I N. DCOC:An optimality criteria method for large systems part Ⅰ:theory[J]. Structural Optimization, 1992, 5(1-2):12-25. [31] WU Heng, ZHANG Xianmin, WANG Ruizhou, et al. Displacement measurement of the compliant positioning stage based on a computer micro-vision method[J]. Aip Advances, 2016, 6(2):25009. [32] LI Hai, ZHU Benliang, ZHANG Xianmin, et al. Pose sensing and servo control of the compliant nanopositioners based on microscopic vision[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4):3324-3335. [33] GUELPA V, LAURENT G, SANDOZ P, et al. Vision-based microforce measurement with a large range-to-resolution ratio using a twin-scale pattern[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6):1-9. |