[1] JIANG Chenggang, XIN Shicheng, WU Chengwei. Drag reduction of a miniature boat with superhydrophobic grillebottom[J]. AIP Advances, 2011, 1(3):21-48. [2] SEYCHELLES F, INGREMEAU F, PRADERE C, et al. From intermittent to nonintermittent behavior in two dimensional thermal convection in a soap bubble[J]. Physical Review Letters, 2010, 105(26):264502. [3] ZHANG Xuehua, HU Jun, Nanobubbles at the solid/water interface[J]. Progress in Chemistry, 2004, 16(5):673-681. 张雪花, 胡钧. 固液界面纳米气泡的研究进展[J]. 化学进展, 2004, 16(5):673-681. [4] QU Xiaopeng, QIU Huihe. Acoustically driven micro-thermal-bubble dynamics in a microspace[J]. Journal of Micromechanics and Microengineering, 2010, 20(9):095012. [5] ZHANG Lijuan, FANG Haiping, HU Jun. Scientific mysteries of nanobubbles[J]. Physics, 2018, 47(9):574-583. 张立娟, 方海平, 胡钧. 纳米气泡的科学之谜[J]. 物理, 2018, 47(9):574-583. [6] ZOU Zhenglei. The properties of surface nanobubbles formed on different substrates[D]. Shanghai:Shanghai Normal University, 2018. 邹正磊. 不同疏水界面纳米气泡的产生及其特性研究[D]. 上海:上海师范大学, 2018. [7] ABDELHAMID M, BHARAT B. Nanobubbles and their role in slip and drag[J]. Journal of Physics:Condensed Matter, 2013, 25(18):184003-18400. [8] CAO Bingyang, CHEN Min, GUO Zengyuan, Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation.[J]. Physical Review. E, Statistical Nonlinear Soft Matter Physics, 2006, 74(2):066-311. [9] PIT R, HERVET H, LEGER L. Direct experimental evidence of slip in hexadecane:solid lnterfaces[J]. Physical Review Letters, 2000, 85(5):980- 983. [10] GLEN M, NEWTON M, SHIRTCLIFFE N. Immersed superhydrophobic surfaces:Gas exchange, slip and drag reduction properties[J]. Soft Matter, 2010, 6(4):714-719. [11] ZHANG Xuehua, MAEDA N, CRAIG V. Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions[J]. Langmuir, 2006, 22(11):5025-5035. [12] ISHIDA N, INOUE T, MIYAHARA M. Nanobubbles on a hydrophobic surface in water observed by Tapping-mode atomic force microscopy[J]. Langmuir, 2000, 16(16):6377-6380. [13] LJUNGGREN S, ERIKSSON J. The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1997, 129:151-155. [14] PLESSET M, SADHAL S. On the stability of gas bubbles in liquid-gas solutions[J]. Applied Scientific Research, 1982, 38(1):133-141. [15] OHGAKI K, KHANH N, JODEN Y, et al. Physicochemical approach to nanobubble solutions[J]. Chemical Engineering Science, 2010, 65(3):1296-1300. [16] WEIJS J, SEDDON J, LOHSE D. Diffusive shielding stabilizes bulk nanobubble clusters[J]. Chem. Phys. Chem., 2012, 13(8):2197-2204. [17] YANG S, DAMMER S M, BREMOND N, et al. Characterization of nanobubbles on hydrophobic surfaces in water[J]. Langmuir, 2007, 23(13):7072-7077. [18] XIAO Qianxiang, LIU Yawei, GUO Zhenjiang, et al. Solvent exchange leading to nanobubble nucleation:A molecular dynamics study[J]. Langmuir, 2017, 33(32):8090-8096. [19] WEIJS J, SNOEIJER J, LOHSE D. Formation of surface nanobubbles and the universality of their contact angles:A molecular dynamics approach[J]. Physical Review Letters, 2012, 108(10):104501. [20] SEDDON J, KOOIJ E, POELSEMA B, et al. Surface bubble nucleation stability[J]. Physical Review Letters, 2011, 106(5):056101. [21] XIE Hui, LIU Chao. Effects of surface wettability on bubbles in nanochannels[J]. Acta Physico-Chimica Sinica, 2009, 25(12):2537-2542. [22] ZHANG Longyan, XU Jinliang, LEI Junpeng. Molecular dynamics simulation of bubble nucleation in nanochannel[J]. Science Technology and Engineering, 2019, 19(5):18-24. 张龙艳, 徐进良, 雷俊鹏. 纳米通道内气泡核化的分子动力学模拟[J]. 科学技术与工程, 2019, 19(5):18-24. [23] LOHSE D, ZHANG Xuehua. Pinning and gas oversaturation imply stable single surface nanobubbles[J]. Physical Review E, 2015, 91(3):031003. [24] TSAI J, LIN Liwei. Transient thermal bubble formation on polysilicon micro-resisters[J]. Journal of Heat Transfer, 2002, 124:275-382. [25] WANG Yuan, WANG Zhenguo. An overview of liquid-vapor phase change, flow and heat transfer in mini- and micro-channels[J]. International Journal of Thermal Sciences, 2014, 86:227-245 [26] YANG Shangjiong, DAMMER S, BREMOND N, et al. Characterization of nanobubbles on hydrophobic surfaces in water[J]. Langmuir, 2007, 23(13):7072-7. [27] ZHANG Xuehua, LI Gang, WU Zhihua, et al. Effect of temperature on the morphology of, nanobubbles at mica/water interface[J]. Chinese Physics B, 2005, 14(9):1774-1778. [28] LIU Yawei, ZHANG Xianren. Molecular dynamics simulation of nanobubble nucleation on rough surfaces[J]. Journal of Chemical Physics, 2017, 146(16):164704. [29] XIAO Qianxiang, LIU Yawei, GUO Zhenjiang, et al. Solvent exchange leading to nanobubble nucleation:a molecular dynamics study[J]. Langmuir, 2017, 33(32):8090-8096. [30] JOOST H, JACCO H, DETLEF L. Formation of surface nanobubbles and the universality of their contact angles:A molecular dynamics approach[J]. Physical Review Letters, 2012, 108(10):104501. [31] LIU Yawei, ZHANG Xianren. A unified mechanism for the stability of surface nanobubbles:Contact line pinning and supersaturation[J]. Journal of Chemical Physics, 2014, 141(13):8468. [32] MAHESHWARI S, MARTIN V, ZHANG X, et al. Stability of surface nanobubbles:A molecular dynamics study[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2016, 32(43):11116. [33] JOOST H, JAMES S, DETLEF L. Diffusive shielding stabilizes bulk nanobubble clusters[J]. Chem. Phys. Chem., 2012, 13(8):2197-2204. [34] MAHESHWARI S, MARTIN V, ZHANG Xuehua, et al. Stability of surface nanobubbles:A molecular dynamics study[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2016, 32(43):11116. [35] LIU Peng, LU Yan, SHI Pengcheng. A molecular dynamics study of the atomic-level surface structural phase diagram for the existence form of nanobubbles and its influence in a dynamic system[J]. Particulate Science and Technology, 2021, 39(3). [36] LI Dayong. Study of nanobubbles at solid-liquid interface and the influence of nanobubbles on boundary slip of fluids[D]. Harbin:Harbin Institute of Technology, 2014. 李大勇. 固液界面纳米气泡及其对流体边界滑移影响的研究[D]. 哈尔滨:哈尔滨工业大学, 2014. |