• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (1): 97-107.doi: 10.3901/JME.2022.01.097

• 机械动力学 • 上一篇    下一篇

扫码分享

基于2.5维有限元-边界元的高速列车车体铝型材声振特性研究

邓铁松1, 肖新标1, 圣小珍2   

  1. 1. 西南交通大学牵引动力国家重点实验室 成都 610031;
    2. 上海工程技术大学城市轨道交通学院 上海 201620
  • 收稿日期:2021-03-10 修回日期:2021-09-30 出版日期:2022-01-05 发布日期:2022-03-19
  • 通讯作者: 圣小珍(通信作者),男,1962年出生,博士,教授,博士研究生导师。主要研究方向为振动噪声理论。E-mail:shengxiaozhen@hotmail.com
  • 作者简介:邓铁松,男,1988年出生,博士研究生。主要研究方向为复杂结构、层状复合结构的振动与噪声。E-mail:dengtiesong1988420@163.com
  • 基金资助:
    国家自然科学高铁联合重点基金(U1834201)和国家重点研发计划战略性国际科技创新合作重点专项(2016YFE0205200)资助项目。

Research on Vibro-acoustics of Aluminium Extrusions from a High-speed Train Body Based on Two-and-half Dimensional Finite Element/Boundary Element Method

DENG Tiesong1, XIAO Xinbiao1, SHENG Xiaozhen2   

  1. 1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031;
    2. School of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620
  • Received:2021-03-10 Revised:2021-09-30 Online:2022-01-05 Published:2022-03-19

摘要: 铝型材作为高速列车车体层状复合结构的主要部件,声振性能的优劣直接影响车内声学环境和乘车舒适度。由于铝型材尺寸庞大、结构复杂,解析模型和传统的有限元/边界元法对其声振特性的预测存在一定的局限。铝型材截面几何特征和材料属性沿纵向均匀一致分布,当结构波长远大于结构尺寸时,可视为典型的波导结构,2.5维有限元-边界元法被广泛认为是研究其声振特性最合适的方法之一。因此,基于2.5维有限元法建立了铝型材的波动模型,研究了铝型材的波传播特征;基于2.5维边界元法建立了铝型材两侧声场的预测模型,同时,结合结构与声场的边界耦合条件,建立了铝型材的2.5维有限元-边界元声辐射和隔声模型,分析了力激励位置对结构振动响应、辐射声功率及辐射效率的影响,讨论了混响声场激励下边界条件对结构隔声性能的影响,提出了一种基于频散特性的将铝型材等效为均质板的方法。研究结果表明,在低频和高频,结构振动分别以截面的整体变形和局部变形的特征波为主;等效均质板的弯曲波频散与铝型材的整体弯曲波频散吻合很好;力激励位置对结构的振动响应和辐射声功率影响显著,对辐射效率影响很小;声激励下,边界条件只对结构在刚度控制区的隔声影响显著,约束约强,隔声越大。这些研究结果对高速列车车体型材结构减振降噪措施的进一步研究提供了理论依据。

关键词: 2.5维有限元法, 2.5维边界元法, 高速列车, 铝型材, 振动声辐射, 隔声

Abstract: Aluminium extrusions are main components of multi-layered composite structures from high-speed train carriages. The vibro-acoustic behaviours of the extruison are highly relevant to the interior noise and riding comfort. Due to its large size and complex geometry, the analytical solution and traditional finite element(FE)/boundary element(BE) methods are limited to the vibro-acoutic prediciton of such a structure. Since the cross-section is uniform in the longitudial direction, the extrusion can be idealized to a waveguide, especially when the structural wavelength is much larger than the dimension of the extrusion. It is widely accepted that the two-and-half dimensional (2.5D) FE/BE methods are particularly suitable to predict the vibro-acoustic behaviours of such a strcture. Therefore, the wave propagation model of the extrusion is establised using the 2.5D FE method, with which the wave types in the structure are catogorized. The acoustic fields on both sides of the structure are predicted using the 2.5D BE method. Combing with the boundary conditions at the interface of the extrusion with the fluids, the coupled 2.5D FE-BE model for vibro-acoustics of the structure is esbalised. Using the 2.5D FE-BE model, the effects of mechanical force location on the vibraion response, sound radiation power and sound radiation efficiency of the strucutre are analyzed. A method is proposed to equivalently treat the extrusion as an homogenous plate based on the dispersion relation. The influence of boundary conditions on the diffused field sound transmission loss (STL) of the structure are studied. Results show that at low frequecies and high frequencies, free waves with global and local cross-section deformation propagating in the structure contributes the vibration of the structure respectively. The flexual dispersion relation of the equivalent plate matches well with that of the extruson. Mechanical force location has a significant effect on the vibraiton response and radiated sound power, while has little influence on the radiation efficiency. The STL of the structure at stiffness-controlled regieon is greatly affected by the boundary conditions that the more the constraints, the higher the STL. These research results can provide theoretical guidance to vibration and noise reduction in the future study.

Key words: 2.5D finite element method, 2.5D boundary element method, high-speed train, aluminium extrusion, sound radiation, sound transmission loss

中图分类号: