• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (22): 96-105.doi: 10.3901/JME.2021.22.096

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

基于几何纹理与Anscombe变换的蜂窝材料太赫兹图像降噪模型

孙凤山1, 范孟豹1, 曹丙花2, 叶波3,4, 刘林5   

  1. 1. 中国矿业大学机电工程学院 徐州 221116;
    2. 中国矿业大学信息与控制工程学院 徐州 221116;
    3. 昆明理工大学信息工程与自动化学院 昆明 650500;
    4. 昆明理工大学云南省人工智能重点实验室 昆明 650500;
    5. 北京航天计量测试技术研究所 北京 100076
  • 收稿日期:2020-11-20 修回日期:2021-07-13 出版日期:2021-11-20 发布日期:2022-02-28
  • 通讯作者: 范孟豹(通信作者),男,1981年出生,博士,教授,博士研究生导师。主要研究方向为涡流/太赫兹无损检测理论及应用。E-mail:wuzhi3495@cumt.edu.cn
  • 作者简介:孙凤山,男,1994年出生,博士研究生。主要研究方向为太赫兹无损检测成像方法与图像处理。E-mail:TB20050013B4@cumt.edu.cn;叶波,男,1978年出生,博士,教授,博士研究生导师。主要研究方向为结构健康监测、电磁无损检测与评估、信号处理和反演问题、成像及图像处理、智能电网。E-mail:yeripple@hotmail.com
  • 基金资助:
    国家自然科学基金(62071471)和江苏高校优势学科建设工程资助项目。

Denoising Model of Terahertz Imaging of Honeycomb Material Based on Geometric Texture and Anscombe Transformation

SUN Fengshan1, FAN Mengbao1, CAO Binghua2, YE Bo3,4, LIU Lin5   

  1. 1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116;
    2. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116;
    3. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500;
    4. Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500;
    5. Beijing Aerospace Institute for Metrology and Measurement Technology, Beijing 100076
  • Received:2020-11-20 Revised:2021-07-13 Online:2021-11-20 Published:2022-02-28

摘要: 为解决太赫兹(Terahertz,THz)图像内泊松高斯混合噪声导致芳纶纤维蜂窝材料脱粘缺陷轮廓检测精度低的问题,基于Anscombe变换与小波阈值法构建了THz图像降噪模型。高斯噪声方差为降噪模型的必要参数,但实际THz图像噪声分布未知,且噪声与纹理在高频混叠,给方差准确估计提出了挑战。为此,首先以样件纹理几何形状为先验信息,构造Benzene-ring算子去除THz图像纹理,使其小波域高频分量中仅含有噪声;然后提出改进的Logistic混沌映射提高样本集的多样性,以训练Elman神经网络准确建立高频分量与高斯噪声方差间映射关系;最后依据噪声方差估计值,基于Anscombe变换将泊松高斯混合噪声转化为高斯噪声,并利用小波阈值法与Anscombe逆变换得到了最终THz降噪图像。仿真与试验结果表明,所提出的方法降噪效果最佳并有效提高缺陷轮廓检测精度,相比于高斯滤波、小波阈值以及非局部均值法,平均梯度指标分别提升12%、33%、9%,缺陷面积绝对误差分别降低234 mm2、304 mm2、263 mm2

关键词: 太赫兹无损检测, 泊松高斯混合噪声, Benzene-ring算子, 噪声估计, 图像降噪

Abstract: In order to solve the problem of low accuracy caused by mixed Poisson-Gaussian noise in Terahertz (THz) images of aramid fiber honeycomb material in contour detection of defects, a THz image denoising model is constructed based on the Anscombe transformation and wavelet threshold method. The variance of Gaussian noise is a necessary parameter of denoising model, but the noise distribution of THz images is unknown. Meanwhile, the texture and noise are mixed in high frequency, which gives challenges to accurate variance estimation. Firstly, taking the texture geometry of the sample as the prior information, the Benzene-ring operator is constructed to remove the texture of the THz image, so that the high-frequency components only contain noise. Secondly, an improved Logistic chaotic mapping is proposed to improve the diversity of dataset to train Elman neural network for building the mapping relationship between the high-frequency component and the variance of Gaussian noise. Finally, the Anscombe transformation is performed to transform the mixed Poisson-Gaussian noise to gaussian noise. The THz denoised image is obtained by using wavelet threshold method and Anscombe inverse transformation. The experiment and simulation results show that the proposed model can eliminate the mixed Poisson-Gaussian noise better than other three methods and improves the accuracy of defect contour detections. Compared with the Gaussian filtering, wavelet threshold and non-local mean value methods, the average gradient index is increased by 12%, 33%, and 9%, and the absolute error of defect area is reduced by 234 mm2, 304 mm2, and 263 mm2, respectively.

Key words: Terahertz nondestructive testing, mixed Poisson-Gaussian noise, Benzene-ring operator, noise estimation, image denoising

中图分类号: