[1] 施祎, 杨晓光, 杨迪迪, 等. 定向凝固镍基高温合金DZ125疲劳裂纹扩展速率研究[J]. 机械工程学报, 2019, 55(13):45-52. SHI Yi, YANG Xiaoguang, YANG Didi, et al. The study on the fatigue crack growth of nickel based directional solidification superalloys DZ125[J]. Journal of Mechanical Engineering, 2019, 55(13):45-52. [2] LI Yao, QIAN Dan, XUE Jiawei, et al. A synchrotron study of defect and strain inhomogeneity in laser-assisted three-dimensionally-printed Ni-based superalloy[J]. Applied Physics Letters, 2015, 107(18):181902. [3] XUE Jiawei, ZHANG Anfeng, LI Yao, et al. Asynchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy[J]. Scientific Reports, 2015, 5(9):14903. [4] CHEN Kai, HUANG Ruiqiu, LI Yao, et al. Rafting-enabled recovery avoids recrystallization in3D-printing-repaired single-crystal superalloys[J]. Advanced Materials, 2020, 32(12):1907064. [5] PANWISAWAS C, TANG Y T, REED R C. Metal 3Dprinting as a disruptive technology for superalloys[J]. Nature Communications, 2020, 11:2327. [6] QIAN Dan, XUE Jiawei, ZHANG Anfeng, et al. Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy[J]. Scientific Reports, 2017, 7:2859. [7] LI Yao, CHEN Kai, TAMURA N. Mechanism of heat affected zone cracking in Ni-based superalloy DZ125Lfabricated by laser 3D printing technique[J]. Materials&Design, 2018, 150:171-181. [8] 任海水, 熊华平, 吴欣, 等. 钛铝系合金与镍基高温合金异种连接技术研究进展[J]. 机械工程学报, 2017, 53(4):1-10. REN Haishui, XIONG Huaping, WU Xin, et al. Research advances on the dissimilar joining of titanium aluminides and nickel-based superalloys[J]. Journal of Mechanical Engineering, 2017, 53(4):1-10. [9] OJO O A, RICHARDS N L, CHATURVEDI M C. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738superalloy[J]. Scripta Materialia, 2004, 50(5):641-646. [10] GRILLOUD R, GONSETH D, DEKUMBIS R. Apparatus for producing a surface layer on a metallic workpiece:USA, 522499[P]. 1993-07-06. [11] CHIANG M F, CHEN C. Induction-assisted laser welding of IN-738 nickel-base superalloy[J]. Materials Chemistry and Physics, 2009, 114(1):415-419. [12] 宋衎, 黄卫东, 喻凯, 等. 热处理态激光立体成形Inconel718高温合金的组织及力学性能[J]. 金属学报, 2015, 51(8):935-942. SONG Kan, HUANG Weidong, YU Kai, et al. Microstructure and mechanical properties of heat treatment laser solid forming superalloy inconel 718[J]. Acta Metallurgica Sinica, 2015, 51(8):935-942. [13] 梁少端, 张安峰, 王潭, 等. 感应加热消除激光直接成形DD4零件裂纹[J]. 中国激光, 2017, 44(2):0202003. LIANG Shaoduan, ZHANG Anfeng, WANG Tan, et al. Elimination of laser direct forming crack on DD4 parts by induction heating[J]. Chinese Journal of Lasers, 2017, 44(2):0202003. [14] 《中国航空材料手册》编辑委员会. 中国航空材料手册[M]. 北京:中国标准出版社, 2001. Editorial Board of China Aviation Materials Handbook. China aviation material handbook[M]. Beijing:China Standard Press, 2001. [15] GAUMANN M, BEZENCON C, CANALIS P, et al. Single-crystal laser deposition of superalloys:Processing-microstructure maps[J]. Acta Materialia, 2001, 49(6):1051-1062. [16] ROEHLING T T, WU S S Q, KHAIRAIIAH S A, et al. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing[J]. Acta Materialia, 2017, 128:197-206. [17] CHEN Y, LU F, ZHANG K, et al. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling[J]. Journal of Alloys and Compounds, 2016, 670:312-321. [18] ZHOU G, ZHU W, SHEN H, et al. Real-time microstructure imaging by Laue microdiffraction:Asample application in laser 3D printed Ni-based superalloys[J]. Scientific Reports, 2016, 6:28144. [19] KOU S. Welding metallurgy[M]. New Jersey:Wiley, 2003. [20] QIAN D, ZHANG A F, ZHU J, et al. Hardness and microstructural inhomogeneity at the epitaxial interface of laser 3D-printed Ni-based superalloy[J]. Applied Physics Letters, 2016, 109(10):101907. [21] REED R C. The superalloys:Fundamentals and applications[M]. London:Cambridge University Press, 2008. [22] REED R C, RAE C M F. Physical metallurgy of the nickel-based superalloys[M]. Oxford:Elsevier, 2014. [23] ZHOU C, WANG N, XU H. Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings[J]. Materials Science and Engineering A, 2007, 452:569-574. [24] SAUNDERS N, GUO U K Z, LI X, et al. Using JMat Pro to model materials properties and behavior[J]. JOM, 2003, 55(12):60-65. [25] OSADA T, GU Y, NAGASHIMA N, et al. Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure[J]. Acta Materialia, 2013, 61(5):1820-1829. [26] LI Y, CHEN K, NARAYAN R L, et al. Multi-scale microstructural investigation of a laser 3D printed Ni-based superalloy[J]. Additive Manufacturing, 2020, 34:101220. [27] WANG X, CARTE L N, PANG B, et al. Microstructure and yield strength of SLM-fabricated CM247LCNi-superalloy[J]. Acta Materialia, 2017, 128:87-95. [28] GALINDO-NAVA E I, CONNOR L D, RAE C M F. On the prediction of the yield stress of unimodal and multimodalγ'nickel-base superalloys[J]. Acta Materialia, 2015, 98:377-390. |