机械工程学报 ›› 2021, Vol. 57 ›› Issue (22): 3-34.doi: 10.3901/JME.2021.22.003
• 特邀专栏:耦合材料-结构的设计与评估方法 • 上一篇 下一篇
吴圣川1, 胡雅楠1, 杨冰1, 张海鸥2, 郭广平3, 康国政1
收稿日期:
2020-11-30
修回日期:
2021-09-27
出版日期:
2021-11-20
发布日期:
2022-02-28
作者简介:
吴圣川,男,1979年出生,博士后,研究员,博士研究生导师。主要研究方向为先进结构的损伤容限设计与剩余寿命评价、先进材料的疲劳损伤演化的同步辐射三维原位成像表征及装备研发。E-mail:wusc@swjtu.edu.cn
基金资助:
WU Shengchuan1, HU Yanan1, YANG Bing1, ZHANG Haiou2, GUO Guangping3, KANG Guozheng1
Received:
2020-11-30
Revised:
2021-09-27
Online:
2021-11-20
Published:
2022-02-28
摘要: 金属增材制造过程中不可避免地会产生气孔和未熔合缺陷。尽管采取参数优化和后热处理能够在一定程度上降低缺陷水平,但至今尚无有效方法予以完全消除。这些缺陷作为典型的应力集中源,会诱导疲劳裂纹形核,从而大幅降低材料的疲劳强度和寿命,被视为增材构件可靠性服役的“顽疾”。从静态缺陷表征、动态缺陷演化、缺陷分级、缺陷-疲劳强度设计方法以及缺陷-疲劳寿命评估技术等五个方面论述增材制造缺陷与疲劳行为的研究进展。重点介绍借助X射线成像技术开展缺陷特征及演化的三维、无损、可视化表征与定量统计方法;进一步地,论述基于同步辐射光源的原位力学和疲劳测试系统及表征方法及其在原位、无损、实时、动态追踪缺陷或者裂纹演化机制方面中的应用;增材缺陷具有全域分布、形态多样、尺寸跨度大等特征,总结六种缺陷等级判断方法;在缺陷容限和损伤容限框架内,建立基于材料表面/亚表面/内部缺陷特征的疲劳强度和寿命评价方法。最后,指出借助数据驱动的高通量试验平台和机器学习算法、多尺度多物理场数值模拟是实现增材制造材料工艺设计-缺陷表征-性能评价一体化研究的重要研究课题。
中图分类号:
吴圣川, 胡雅楠, 杨冰, 张海鸥, 郭广平, 康国政. 增材制造材料缺陷表征及结构完整性评定方法研究综述[J]. 机械工程学报, 2021, 57(22): 3-34.
WU Shengchuan, HU Yanan, YANG Bing, ZHANG Haiou, GUO Guangping, KANG Guozheng. Review on Defect Characterization and Structural Integrity Assessment Method of Additively Manufactured Materials[J]. Journal of Mechanical Engineering, 2021, 57(22): 3-34.
[1] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG Huaming. Material's fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698. [2] 任永明, 林鑫, 黄卫东. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展[J]. 稀有金属材料与工程, 2017, 46(10):3160-3168. REN Yongming, LIN Xin, HUANG Weidong. Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy[J]. Rare Metal Materials and Engineering, 2017, 46(10):3160-3168. [3] 李涤尘, 贺健康, 田小永, 等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报, 2013, 49(6):129-135. LI Dichen, HE Jiankang, TIAN Xiaoyong, et al. Additive manufacturing:Integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering, 2013, 49(6):129-135. [4] 魏青松. 增材制造技术原理及应用[M]. 北京:科学出版社, 2017. WEI Qingsong. Principle and application of additive manufacturing technology[M]. Beijing:Science Press, 2017. [5] YADOLLAHI A, SHAMSAEI N. Additive manufacturing of fatigue resistant materials:Challenges and opportunities[J]. International Journal of Fatigue, 2017(98):14-31. [6] LIU S Y, SHIN Y C. Additive manufacturing of Ti-6Al-4V alloy:A review[J]. Materials and Design, 2019(164):107552. [7] 王华明, 张述泉, 王向明. 大型钛合金结构件激光直接制造的进展与挑战[J]. 中国激光, 2009, 36(12):3204-3209. WANG Huaming, ZHANG Shuquan, WANG Xiangming. Progress and challenges of laser direct manufacturing of large titanium structural components[J]. Chinese Journal of Lasers, 2009, 36(12):3204-3209. [8] 兰红波, 李涤尘, 卢秉恒. 微纳尺度3D打印[J]. 中国科学:技术科学, 2015, 45(9):919-940. LAN Hongbo, LI Dichen, LU Bingheng. Micro-and nanoscale 3D printing[J]. Scientia Sinica Technologica, 2015, 45(9):919-940. [9] 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光:技术科学, 2020, 47(5):0500002. GU Dongdong, ZHANG Hongmei, CHEN Hongyu, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5):0500002. [10] PLOCHER J, PANESAR A. Review on design and structural optimization in additive manufacturing:Towards next-generation lightweight structures[J]. Materials and Design, 2019(183):108164. [11] KASPEROVICH G, HAUSMANN J. Improvement of fatigue resistance and ductility of Ti Al6V4 processed by selective laser melting[J]. Journal of Materials Processing Technology, 2015(220):202-214. [12] 林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学, 2015, 45(9):1111-1126. LIN Xin, HUANG Weidong. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica Informationis, 2015, 45(9):1111-1126. [13] TAVLOVICH B, SHIRIZLY A, KATZ R. EBW and LBWof additive manufactured Ti6Al4V products[J]. Welding Journal, 2018(97):179-190. [14] 李昂, 刘雪峰, 俞波, 等. 金属增材制造技术的关键因素及发展方向[J]. 工程科学学报, 2019, 41(2):159-173. LI Ang, LIU Xuefeng, YU Bo, et al. Key factors and developmental directions with regard to metal additive manufacturing[J]. Chinese Journal of Engineering, 2019, 41(2):159-173. [15] RIEMER A, LEUDERS S, THONE M, et al. On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting[J]. Engineering Fracture Mechanics, 2014(120):15-25. [16] EDWARDS P, RAMULU M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science&Engineering A, 2014(598):327-337. [17] BERETTA S, ROMANO S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes[J]. International Journal of Fatigue, 2017(94):178-191. [18] GONG H J, RAFI K, GU H F, et at. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J]. Materials and Design, 2015(86):545-554. [19] HU Y N, WU S C, WITHERS P J, et al. The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures[J]. Materials and Design, 2020(192):108708. [20] HU Y N, WU S C, WU Z K, et al. A new approach to correlate the defect population with the fatigue life of selective laser melted Ti-6Al-4V alloy[J]. International Journal of Fatigue, 2020(136):105584. [21] DANIEWICZ S R, SHAMSAEI N. An introduction to the fatigue and fracture behavior of additive manufactured parts[J]. International Journal of Fatigue, 2017(94):167. [22] HRABE N, GNÄUPEL-HEROLD T, QUINN T. Fatigue properties of a titanium alloy (Ti-6Al-4V) fabricated via electron beam melting (EBM):Effects of internal defects and residual stress[J]. International Journal of Fatigue, 2017(94):202-210. [23] PEHUES J, ROACH M, WILLIAMSON R S, et al. Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V[J]. International Journal of Fatigue, 2018(116):543-552. [24] VAYSSETTE B, SAINTIER N, BREGGER C, et al. Numerical modelling of surface roughness effect on the fatigue behavior of Ti-6Al-4V obtained by additive manufacturing[J]. International Journal of Fatigue, 2019(123):180-195. [25] GU D D, SHEN Y F. Balling phenomena in direct laser sintering of stainless steel powder:Metallurgical mechanisms and control methods[J]. Materials and Design, 2009, 30(8):2903-2910. [26] 高航, 彭灿, 王宣平. 航空增材制造复杂结构件表面光整加工技术研究及进展[J]. 航空制造技术, 2019, 62(9):14-22. GAO Hang, PENG Can, WANG Xuanping. Research progress on surface finishing technology of aeronautical complex structural parts manufactured by additive manufacturing[J]. Aeronautical Manufacturing Technology, 2019, 62(9):14-22. [27] 章媛洁, 宋波, 赵晓, 等. 激光选区熔化增材与机加工复合制造AISI 420不锈钢:表面粗糙度与残余应力演变规律研究[J]. 机械工程学报, 2018, 54(13):170-178. ZHANG Yuanjie, SONG Bo, ZHAO Xiao, et al. Selective laser melting and subtractive hybrid manufacture AISI420 stainless steel:Evolution on surface roughness and residual stress[J]. Journal of Mechanical Engineering, 2018, 54(13):170-178. [28] WU A S, BROWN D W, KUMAR M, et al. An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel[J]. Metallurgical&Materials Transactions A, 2014, 45(13):6260-6270. [29] BENEDETTI M, FONTANARI V, BANDINI M, et al. Low-and high-cycle fatigue resistance of Ti-6Al-4V ELIadditively manufactured via selective laser melting:Mean stress and defect sensitivity[J]. International Journal of Fatigue, 2018(107):96-109. [30] BAGEHORN S, WEHR J, MAIER H J. Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts[J]. International Journal of Fatigue, 2017(102):135-142. [31] 杜畅, 张津, 连勇, 等. 激光增材制造残余应力研究现状[J]. 表面技术, 2019, 48(1):200-207. DU Chang, ZHANG Jin, LIAN Yong, et al. Research progress on residual stress in laser additive manufacturing[J]. Surface Technology, 2019, 48(1):200-207. [32] 赵剑峰, 谢德巧, 梁绘昕, 等. 金属增材制造变形与残余应力的研究现状[J]. 南京航空航天大学学报, 2019, 51(1):1-6. ZHAO Jianfeng, XIE Deqiao, LIANG Huixin, et al. Review of distortion and residual stress in metal additive manufacturing[J]. Journal of Nanjing University of Aeronautics&Astronautics, 2019, 51(1):1-6. [33] ZHANG J K, WANG X Y, PADDEA S, et al. Fatigue crack propagation behavior in wire+arc additive manufactured Ti-6Al-4V:Effects of microstructure and residual stress[J]. Materials and Design, 2016(90):551-561. [34] MIRZAEE-SISAN A, BASTOLA A. Redistribution of welding residual stress following high plastic deformation in seamless pipes[J]. International Journal of Pressure Vessels and Piping, 2017(158):37-50. [35] LEE Y B, CHUNG C S, PARK Y K, et al. Effects of redistributing residual stress on the fatigue behavior of SS330 weldment[J]. International Journal of Fatigue, 1998, 20(8):565-573. [36] POLONSKY A T, ECHLIN M P, LENTHE W C, et al. Defects and 3D structural inhomogeneity in electron beam additively manufactured Inconel 718[J]. Materials Characterization, 2018(143):171-181. [37] QIAN G A, JIAN Z M, PAN X N, et al. In-situ investigation on fatigue behaviors of Ti-6Al-4Vmanufactured by selected laser melting[J]. International Journal of Fatigue, 2020(133):105424. [38] XIE Y, GAO M, WANG F D, et al. Anisotropy of fatigue crack growth in wire arc additive manufactured Ti-6Al-4V[J]. Materials Science&Engineering A, 2018(709):265-269. [39] 张安峰, 张金智, 张晓星, 等. 激光增材制造高性能钛合金的组织调控与各向异性研究进展[J]. 精密成形工程, 2019, 11(4):1-8. ZHANG Anfeng, ZHANG Jinzhi, ZHANG Xiaoxing, et al. Research progress in tissue regulation and anisotropy of high-performance titanium alloy by laser additive manufacturing[J]. Journal of Netshape Forming Engineering, 2019, 11(4):1-8. [40] LEUDERS S, THONE M, RIEMER A, et al. On the mechanical behavior of titanium alloy Ti Al6V4manufactured by selective laser melting:Fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2018(48):300-307. [41] RAFI H K, KARTHIK N V, GONG H J, et al. Microstructures and mechanical properties of Ti6Al4Vparts fabricated by selective laser melting and electron beam melting[J]. International Journal of Fatigue, 2013(22):3872-3883. [42] BISWAL R, ZHANG X, MAMUN A A, et al. Interrupted fatigue testing with periodic tomography to monitor porosity defects in wire+arc additive manufactured Ti-6Al-4V[J]. Additive Manufacturing, 2019(28):517-527. [43] PESSARD E, BELLETT D, MOREL F, et al. Amechanistic approach to the Kitagawa-Takahashi diagram using a multiaxial probabilistic framework[J]. Engineering Fracture Mechanics, 2013(109):89-104. [44] BENEDETTI M, FONTANARI V. The effect of bi-modal and lamellar microstructures of Ti-6Al-4V on the behavior of fatigue cracks emanating from edge-notches[J]. Fatigue&Fracture of Engineering Materials&Structures, 2004(27):1073-1089. [45] KASPEROVICH G, HAUBRICH J, GUSSONE J, et al. Correlation between porosity and processing parameters in Ti Al6V4 produced by selective laser melting[J]. Materials and Design, 2016(105):160-170. [46] OLIVEIRA J P, SANTOS T G, MIRANDA R M. Revisiting fundamental welding concepts to improve additive manufacturing:From theory to practice[J]. Progress in Materials Science, 2020(107):100590. [47] LEUNG C L A, MARUSSI S, ATWOOD R C, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing[J]. Nature Communications, 2018(9):1355. [48] HERZOG D, SEYDA V, WYCISK E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117(15):371-392. [49] SERRANO-MUNOZ I, BUFFIERE J Y, MOKSO R, et al. Location, location&size defects close to surfaces dominate fatigue crack initiation[J]. Scientific Reports, 2017(7):45239. [50] DEZECOT S, MAUREL V, BUFFIERE J Y, et al. 3Dcharacterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy[J]. Acta Materialia, 2017(123):24-34. [51] SANAEI N, FATEMI A, PHAN N. Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing[J]. Materials and Design, 2019(182):108091. [52] LEUDERS S, THONE M, RIEMER A, et al. On the mechanical behavior of titanium alloy Ti Al6V4manufactured by selective laser melting:Fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2013(48):300-307. [53] MASUO H, TANAKA Y, MOROKOSHI S, et al. Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing[J]. International Journal of Fatigue, 2018(117):163-179. [54] TAMMAS-WILLIAMS S, WITHERS P J, TODD I, et al. Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components[J]. Scripta Materialia, 2016(122):72-76. [55] GORELIK M. Additive manufacturing in the context of structural integrity[J]. International Journal of Fatigue, 2017(94):168-177. [56] WALKER K F, LIU Q, BRANDT M. Evaluation of fatigue crack propagation behavior in Ti-6Al-4Vmanufactured by selective laser melting[J]. International Journal of Fatigue, 2017(104):302-308. [57] LE V D, PESSARD E, MOREL F, et al. Fatigue behavior of additively manufactured Ti-6Al-4V alloy:The role of defects on scatter and statistical size effect[J]. International Journal of Fatigue, 2020(140):105811. [58] GUNTHER J, KREWERTH D, LIPPMANN T, et al. Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime[J]. International Journal of Fatigue, 2017(94):236-245. [59] 罗琳胤, 江武, 郝晓宁, 等. 民用飞机起落架激光/电子束增材制造技术应用研究[J]. 航空制造技术, 2020, 63(10):42-47. LUO Linyin, JIANG Wu, HAO Xiaoning, et al. Application of laser/electron beam additive manufacturing for civil aircraft landing gear[J]. Aeronautical Manufacturing Technology, 2020, 63(10):42-47. [60] 郭政亚, 熊振华. 金属增材制造缺陷检测技术[J]. 哈尔滨工业大学学报, 2020, 52(5):49-57. GUO Zhengya, XIONG Zhenhua. Defect detection technology in metal additive manufacturing[J]. Journal of Harbin Institute of Technology, 2020, 52(5):49-57. [61] WANG J C, CUI Y N, LIU C M, et al. Understanding internal defects in Mo fabricated by wire arc additive manufacturing through 3D computed tomography[J]. Journal of Alloys and Compounds, 2020(840):155753. [62] 喻程, 吴圣川, 胡雅楠, 等. 铝合金熔焊微气孔的三维同步辐射X射线成像[J]. 金属学报, 2015, 51(2):159-168. YU Cheng, WU Shengchuan, HU Yanan, et al. Three-dimensional imaging of gas pores in fusion welded Al alloys by synchrotron radiation X-ray microtomography[J]. Acta Metallurgica Sinica, 2015, 51(2):159-168. [63] 吴正凯, 吴圣川, 张杰, 等. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7):811-820. WU Zhengkai, WU Shengchuan, ZHANG Jie, et al. Three-dimensional imaging of gas pores in fusion welded defect induced fatigue behaviors of selective laser melted Ti-6Al-4V via synchrotron radiation X-ray tomography[J]. Acta Metallurgica Sinica, 2019, 55(7):811-820. [64] MURAKAMI Y. Effects of small defects and nonmetallic inclusions[M]. Oxford:Elsevier, 2002. [65] ELAMBASSERIL J, LU S L, NING Y P, et al. 3Dcharacterization of defects in deep-powder-bed manufactured Ti-6Al-4V and their influence on tensile properties[J]. Materials Science&Engineering A, 2019(761):138031. [66] 吴正凯. 基于缺陷三维成像的增材铝合金各向异性疲劳性能评价[D]. 成都:西南交通大学, 2020. WU Zhengkai. Evaluation of anisotropic fatigue performance of additive manufactured aluminum alloy based on 3D X-ray computed tomography of defects[D]. Chengdu:Southwest Jiaotong University, 2020. [67] NADOT Y, NADOT-MARTIN C, KAN W H, et al. Predicting the fatigue life of an Al Si10Mg alloy manufactured via laser powder bed fusion by using data from computed tomography[J]. Additive Manufacturing, 2020(32):100899. [68] YADOLLAHI A, SHAMSAEI N, THOMPSON M S, et al. Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PHstainless steel[J]. International Journal of Fatigue, 2017(94):218-235. [69] TAMMAS-WILLIAMS S, ZHAO H, LEONARD F, et al. XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by selective electron beam melting[J]. Materials Characterization, 2015(102):47-61. [70] STEF J, POULON-QUINTIN A, REDJAIMIA A, et al. Mechanism of porosity formation and influence on mechanical properties in selective laser melting of Ti-6Al-4V parts[J]. Materials and Design, 2018(156):480-493. [71] ZHOU X, DAI N, CHU M Q, et al. X-ray CT analysis of the influence of process on defect in Ti-6Al-4V parts produced with Selective Laser Melting technology[J]. The International Journal of Advanced Manufacturing Technology, 2020(106):3-14. [72] PLESSIS A D. Effects of process parameters on porosity in laser powder bed fusion revealed by X-ray tomography[J]. Additive Manufacturing, 2019(30):100871. [73] SALARIAN M, TOYSERKANI E. The use of nano-computed tomography (nano-CT) in non-destructive testing of metallic parts made by laser powder-bed fusion additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2018(98):3147-3153. [74] PLESSIS A D, YADROITSAVA I, YADROITSEV I. Effects of defects on mechanical properties in metal additive manufacturing:A review focusing on X-ray tomography insights[J]. Materials and Design, 2020(187):108385. [75] WU S C, XIAO T Q, WITHERS P J. The imaging o failure in structural materials by synchrotron radiation X-ray micro-tomography[J]. Engineering Fracture Mechanics, 2017(182):127-156. [76] CARLTON H D, HABOUB A, GALLEGOS G F, et al. Damage evolution and failure mechanisms in additively manufactured stainless steel[J]. Materials Science&Engineering A, 2016(651):406-414. [77] WANG P D, ZHOU H, ZHANG L M, et al. In situ X-ray micro-computed tomography study of the damage evolution of prefabricated through-holes in SLM-printed Al Si10Mg alloy under tension[J]. Journal of Alloys and Compounds, 2020(821):153576. [78] 吴圣川, 胡雅楠, 康国政. 材料疲劳损伤行为的先进光源表征技术[M]. 北京:科学出版社, 2018. WU Shengchuan, HU Yanan, KANG Guozheng. Characterization of material fatigue damage via advanced light source tomography[M]. Beijing:Science Press, 2018. [79] BAO J G, WU S C, WITHERS P J, et al. Defect evolution during high temperature tension-tension fatigue of SLMAISi10Mg alloy by synchrotron tomography[J]. Materials Science&Engineering A, 2020(792):139809. [80] WADDELL M, WALKER K, BANDYOPADHYAY R, et al. Small fatigue crack growth behavior of Ti-6Al-4Vproduced via selective laser melting:In situ characterization of a 3D crack tip interactions with defects[J]. International Journal of Fatigue, 2020(137):105638. [81] 巴蒂亚斯, 皮诺. 材料与结构的疲劳[M]. 吴圣川, 李源, 王清远, 译. 北京:国防工业出版社, 2016. BATHIAS C, ANDRE. Fatigue of materials and structures[M]. Translated by WU Shengchuan, LI Yuan, WANG Qingyuan. Beijing:National Defense Industry Press, 2016. [82] AWD M, SIDDIQUE S, JOHANNSEN J, et al. Very high-cycle fatigue properties and microstructural damage mechanisms of selective laser melted Al Si10Mg alloy[J]. International Journal of Fatigue, 2019(124):55-69. [83] ROMANO S, BRANDAO A, GUMPINGER J, et al. Qualification of AM parts:Extreme value statistics applied to tomographic measurements[J]. Materials and Design, 2017(131):32-48. [84] FEDOR F, MANFRED H, NORBERT H, et al. Probabilistic fatigue-life assessment model for laser-welded Ti-6Al-4V butt joints in the high-cycle fatigue regime[J]. International Journal of Fatigue, 2018(116):22-35. [85] 宋哲, 吴圣川, 胡雅楠, 等. 冶金型气孔对熔化焊接7020铝合金疲劳行为的影响[J]. 金属学报, 2018, 54(8):811-820. SONG Zhe, WU Shengchuan, HU Yanan, et al. The influence of metallurgical pores on fatigue behaviors of fusion welded AA7020 joints[J]. Acta Metallurgica Sinica, 2018, 54(8):811-820. [86] XIE C, WU S C, YU Y K, et al. Defect-correlated fatigue resistance of additively manufactured Al-Mg4. 5Mn alloy with in situ micro-rolling[J]. Journal of Materials Processing Technology, 2021(291):117039. [87] SERRANO-MUNOZ I, BUFFIERE J Y, VERDU C. Casting defects in structural components:Are they all dangerous?A 3D study[J]. International Journal of Fatigue, 2018(117):471-484. [88] TAMMAS-WILLIAMS S, WITHERS P J, TODD I, et al. The influence of porosity on fatigue crack initiation in additively manufactured Titanium components[J]. Scripta Materialia, 2017(7):7308. [89] VANDERESSE N, MAIRE E, CHABOD A, et al. Microtomographic study and finite element analysis of the porosity harmfulness in a cast aluminum alloy[J]. International Journal of Fatigue, 2011(33):1514-1525. [90] LI P, LI J, DONATH S, et al. Quantification of the interaction within defect populations on fatigue behavior in an aluminum alloy[J]. Acta Materialia, 2009, 57(12):3539-3548. [91] DANNINGER H, WEISS B. The influence of defects on high cycle fatigue of metallic materials[J]. Journal of Materials Processing Technology, 2003(143-144):179-184. [92] WU S C, SONG Z, KANG G Z, et al. The Kitagawa-Takahashi fatigue diagram to hybrid welded AA7050 joints via synchrotron tomography[J]. International Journal of Fatigue, 2019(125):210-221. [93] LI P, WARNER D H, FATEMI A, et al. Critical assessment of the fatigue performance of additively manufactured Ti-6Al-4V and perspective for future research[J]. International Journal of Fatigue, 2016(85):130-143. [94] MU P, NADOT Y, NADOT-MARTIN C, et al. Influence of casting defects on the fatigue behavior of cast aluminum AS7G06-T6[J]. International Journal of Fatigue, 2014(63):97-109. [95] QIAN G A, JIAN Z M, QIAN Y J, et al. Very-high-cycle fatigue behavior of Al Si10Mg manufactured by selective laser melting:Effect of build orientation and mean stress[J]. International Journal of Fatigue, 2020(138):105696. [96] MURAKAMI Y, BERETTA S. Small defects and inhomogeneities in fatigue strength:Experiments, models and statistical implications[J]. Extremes, 1999, 2(2):123-147. [97] BERETTA S. More than 25 years of extreme value statistics for defects:Fundamentals, historical developments, recent applications[J]. International Journal of Fatigue, 2021(151):106407. [98] ZERBST U, VORMWALD M, PIPPAN R, et al. About the fatigue crack propagation threshold of metals as a design criterion-A review[J]. Engineering Fracture Mechanics, 2016(153):190-243. [99] AIGNER R, PUSTERHOFER S, POMBERGER S, et al. A probabilistic Kitagawa-Takahashi diagram for fatigue strength assessment of cast aluminum alloys[J]. Materials Science&Engineering A, 2019(745):326-334. [100] XU Z W, WU S C, WANG X S. Fatigue evaluation for high-speed railway axles with surface scratch[J]. International Journal of Fatigue, 2019(123):79-86. [101] WU S C, LUO Y, SHEN Z, et al. Collaborative crack initiation mechanism of 25Cr Mo4 alloy steels subjected to foreign object damages[J]. Engineering Fracture Mechanics, 2020(225):106844. [102] KEVINSANNY, OKAZAKI S, TAKAKUWA O, et al. Defect tolerance and hydrogen susceptibility of the fatigue limit of an additively manufactured Ni-based superalloy 718[J]. International Journal of Fatigue, 2020(139):105740. [103] EL HADDAD M H, TOPPER T H, SMITH K N. Prediction of non-propagating cracks[J]. Engineering Fracture Mechanics, 1979, 11(3):573-584. [104] PIPPAN R, HOHENWARTER A. Fatigue crack closure:A review of the physical phenomena[J]. Fatigue&Ftracture of Engineering Materials&Structures, 2017, 40(4):471-495. [105] WASEN J, HEIER H. Fatigue crack growth thresholds-the influence of Young's modulus and fracture surface roughness[J]. International Journal of Fatigue, 1998, 20(10):737-742. [106] VOJTEK T, POKORNY P, KUBENA I, et al. Quantitative dependence of oxide-induced crack closure on air humidity for railway axle steel[J]. International Journal of Fatigue, 2019(123):213-224. [107] CHAPETTI M D. Fatigue propagation threshold of short cracks under constant amplitude loading[J]. International Journal of Fatigue, 2003, 25(12):1319-1326. [108] BISWAL R, ZHANG X, SYED A K, et al. Criticality of porosity defects on the fatigue performance of wire+arc additive manufactured titanium alloy[J]. International Journal of Fatigue, 2019(122):208-217. [109] MURAKAMI Y, TAKAGI T, WADA K, et al. Essential structure of S-N curve:Prediction of fatigue life and fatigue limit of defective materials and nature of scatter[J]. International Journal of Fatigue, 2021(146):106138. [110] LI C H, WU S C, ZHANG J Y, et al. Determination of the fatigue P-S-N curves-A critical review and improved backward statistical inference method[J]. International Journal of Fatigue, 2020(139):105789. [111] 陈传尧. 疲劳与断裂[M]. 武汉:华中科技大学出版社, 2002. CHEN Chuanyao. Fatigue and fracture[M]. Wuhan:Huazhong University of Science&Technology Press, 2002. [112] SHUMATANI Y, SHIOZAWA K, NAKADA T, et al. The effect of the residual stresses generated by surface finishing methods on the very high cycle fatigue behavior of matrix HSS[J]. International Journal of Fatigue, 2011(33):122-231. [113] ZHU M L, JIN L, XUAN F Z. Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes[J]. Acta Materialia, 2018, 157(15):259-275. [114] HU Y N, WU S C, XIE C, et al. Fatigue life evaluation of Ti-6Al-4V welded joints manufactured by electron beam melting[J]. Fatigue&Fracture of Engineering Materials&Structures, 2021, 44(8):2210-2221. [115] LIU F L, HE C, CHEN Y, et al. Effects of defects on tensile and fatigue behaviors of selective laser melted titanium alloy in very high cycle regime[J]. International Journal of Fatigue, 2020(140):105795. [116] GREITEMEIER D, PALM F, SYASSEN F, et al. Fatigue performance of additive manufactured Ti6Al4V using electron and laser beam melting[J]. International Journal of Fatigue, 2017(94):211-217. [117] 吴圣川, 李存海, 张文, 等. 金属材料疲劳裂纹扩展机制及模型的研究进展[J]. 固体力学学报, 2019, 40(6):489-538. WU Shengchuan, LI Cunhai, ZHANG Wen, et al. Recent research progress on mechanisms and models of fatigue crack growth for metallic materials[J]. Chinese Journal of Solid Mechanics, 2019, 40(6):489-538. [118] MCDOWELL D L, GALL K, HORSTEMEYER M F, et al. Microstructure-based fatigue modeling of cast A356-T6 alloy[J]. Engineering Fracture Mechanics, 2003(70):49-80. [119] TORRIES B, SHAMSAEI N. Fatigue behavior and modeling of additively manufactured Ti-6Al-4Vincluding interlayer time interval effects[J]. The Minerals, Metals&Materials Society, 2017(69):2698-2705. [120] TORRIES B, STERLING A J, SHAMSAEI N, et al. Utilization of a microstructure sensitive fatigue model for additively manufactured Ti-6Al-4V[J]. Rapid Prototyping Journal, 2016, 22(5):817-825. [121] WU S C, LI C H, LUO Y, et al. A uniaxial tensile behavior based fatigue crack growth model[J]. International Journal of Fatigue, 2020(131):105324. [122] BAO H Y X, WU S C, WU Z K, et al. Amachine-learning fatigue life prediction approach of additively manufactured metals[J]. Engineering Fracture Mechanics, 2021(242):107508. [123] ZHAN Z X, LI H. A novel approach based on the elastoplastic fatigue damage and machine learning models for life prediction of aerospace alloy parts fabricated by additive manufacturing[J]. International Journal of Fatigue, 2021(45):106089. |
[1] | 张云舒, 吴斌涛, 赵昀, 丁东红, 潘增喜, 李会军. 电弧熔丝增材制造传热传质数值模拟研究现状与展望[J]. 机械工程学报, 2024, 60(8): 65-80. |
[2] | 李坤, 吉辰, 白生文, 蒋斌, 潘复生. 高性能镁合金电弧增材制造技术研究现状与展望[J]. 机械工程学报, 2024, 60(7): 289-311. |
[3] | 陈伟, 赵杰, 朱利斌, 曹海波. 增材制造低活化钢研究现状及展望[J]. 机械工程学报, 2024, 60(7): 312-333. |
[4] | 杜文博, 李晓亮, 李霞, 胡深恒, 朱胜. 搅拌摩擦沉积增材技术研究现状[J]. 机械工程学报, 2024, 60(7): 374-384. |
[5] | 郑洋, 赵梓昊, 刘伟, 余政哲, 牛伟, 雷贻文, 孙荣禄. 高性能镁合金增材制造技术研究进展[J]. 机械工程学报, 2024, 60(7): 385-400. |
[6] | 杜军, 王谦元, 何冀淼, 张永恒, 魏正英. TIG电弧辅助熔滴沉积增材制造中熔滴偏距对熔池形貌的影响机制研究[J]. 机械工程学报, 2024, 60(5): 219-230. |
[7] | 蒋周明矩, 熊异, 王柏村. 面向工业5.0的人机协作增材制造[J]. 机械工程学报, 2024, 60(3): 238-253. |
[8] | 石毅磊, 权银洙, 许海鹰, 王壮, 马文龙, 彭勇. 丝束同轴冷阴极电子枪电子束注腰位置影响因素分析[J]. 机械工程学报, 2024, 60(3): 328-336. |
[9] | 荣鹏, 成靖, 邓鸿文, 陶常安, 高川云, 冉先喆, 程序, 汤海波, 刘栋. 不同热处理对激光定向能量沉积制造TC4钛合金组织和拉伸性能的影响[J]. 机械工程学报, 2024, 60(20): 99-107. |
[10] | 夏令伟, 谢亿民, 马国伟. 3D打印制造约束下的多孔结构与路径协同优化方法[J]. 机械工程学报, 2024, 60(19): 241-249. |
[11] | 张明康, 师文庆, 徐梅珍, 王迪, 陈杰. 隐式曲面多孔结构压缩性能与流体压降性能研究[J]. 机械工程学报, 2024, 60(18): 394-406. |
[12] | 黄金杰, 赵欣. 3D打印中的分层计算研究进展[J]. 机械工程学报, 2024, 60(17): 235-262. |
[13] | 喻康, 傅建中, 贺永. 面向软组织缺损修复的组织工程支架研究进展[J]. 机械工程学报, 2024, 60(15): 255-271. |
[14] | 张立浩, 钱波, 茅健, 樊红日, 张朝瑞, 李旭鹏. 基于增材制造的“猫耳形”气膜孔冷却性能研究[J]. 机械工程学报, 2024, 60(15): 334-345. |
[15] | 肖锋, 刘佳, 石岩. 基于增材制造的激光焊接保护喷嘴设计[J]. 机械工程学报, 2024, 60(14): 185-193. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||