[1] 李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1):1-14. LI Keqiang, DAI Yifan, LI Shengbo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1):1-14. [2] 欧阳明高. 中国新能源汽车的研发及展望[J]. 科技导报, 2016, 34(6):13-20. OUYANG Minggao. New energy vehicle research and development in China[J]. Science and Technology Review, 2016, 34(6):13-20. [3] TRAN D D, VAFAEIPOUR M, EL BAGHDADI M, et al. Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains:Topologies and integrated energy management strategies[J]. Renew. Sust. Energ. Rev., 2020, 119. [4] 张风奇, 胡晓松, 许康辉, 等. 混合动力汽车模型预测能量管理研究现状与展望[J]. 机械工程学报, 2019, 55(10):86-108. ZHANG Fengqi, HU Xiaosong, XU Kanghui, et al. Current status and prospects for model predictive energy management in hybrid electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(10):86-108. [5] 唐小林, 李珊珊, 王红, 等. 网联环境下基于分层式模型预测控制的车队能量控制策略研究[J]. 机械工程学报, 2020, 56(14):119-128. TANG Xiaolin, LI Shanshan, WANG Hong, et al. Research on energy control strategy based on hierarchical model predictive control in connected environment[J]. Journal of Mechanical Engineering, 2020, 56(14):119-128. [6] SILVER D, HUANG A, MADDISDN C, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489. [7] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676):354-359. [8] LIU T, HU X S, LI S B, et al. Reinforcement learning optimized look-ahead energy management of a parallel hybrid electric vehicle[J]. IEEE-ASME T. Mech. 2017, 22(4):1497-1507. [9] TAN H C, ZHANG H L, PENG J K, et al. Energy management of hybrid electric bus based on deep reinforcement learning in continuous state and action space[J]. Energ. Convers. Manage., 2019(195):548-560. [10] VOLODYMYR M, KORAY K, DAVID S, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533. [11] WU J D, HE H W, PENG J K. Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus[J]. Appl. Energ., 2018(222):799-811. [12] LI Y C, HE H W, PENG J K, et al. Energy management strategy for a series hybrid electric vehicle using improved deep Q-network learning algorithm with prioritized replay[C/CD]//DEStech Transactions on Environment, Energy and Earth Sciences, 2018. [13] HAN X F, HE H W, WU J D. Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle[J]. Appl. Energ., 2019(254):113708. [14] 赵星宇, 丁世飞. 深度强化学习研究综述[J]. 计算机科学, 2018, 45(7):1-6. ZHAO Xingyu, DING Shifei. Research on deep reinforcement learning[J]. Computer Science, 2018, 45(7):1-6. [15] 刘腾. 混合动力车辆强化学习能量管理研究[D]. 北京:北京理工大学, 2017. LIU Teng. Reinforcement learning-based energy management for hybrid electric vehicles[D]. Beijing:Beijing Institute of Technology, 2017. [16] 胡悦. 混合动力电动汽车控制系统设计与能量管理策略研究[D]. 北京:中国科学院大学(中国科学院深圳先进技术研究院), 2018. HU Yue. Research on control system design and energy management strategy of hybrid electric vehicle[D]. Beijing:University of Chinese Academy of Sciences(Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), 2018. |