[1] AMOR H,NEUMANN G,KAMTHE S,et al. Interaction primitives for human-robot cooperation tasks[C]//2014 IEEE International Conference on Robotics and Automation (ICRA),Hong Kong,China,2014:2831-2837. [2] 雷永林,朱一凡,谭跃进,等. 模型驱动的复杂人机系统过程建模仿真方法[J]. 系统工程与电子技术,2016,38(1):223-231. LEI Yonglin,ZHU Yifan,TAN Yuejin,et al. Model driven process modeling and simulation of complex man-machine systems[J]. Systems Engineering and Electronics,2016,38(1):223-231. [3] 王朝立. 人机共融安全技术发展趋势展望[J]. 自动化仪表,2020,41(3):1-5,10. WANG Chaoli. Prospect for the development trend of manmachine integration safety technology[J]. Automation Instrumentation,2020,41(3):1-5,10. [4] HUU-TOAN T,HONG C,LIN Xichuan,et al. The relationship between physical human-exoskeleton interaction and dynamic factors:Using a learning approach for control applications[J]. Computers,Networks & Communications,2014,57(12):1-13. [5] 程洪,黄瑞,邱静,等. 人机智能技术及系统研究进展综述[J]. 智能系统学报,2020,15(2):386-398. CHENG Hong,HUANG Rui,QIU Jing,et al. Overview of human-machine intelligence technology and system research progress[J]. Journal of Intelligent Systems,2020,15(2):386-398. [6] BILLARD A,CALINON S,DILLMANN R,et al. Survey:Robot programming by demonstration in handbook of robotics[M]. MIT Press,2008. [7] LASCHI C,MAZZOLAI B,CIANCHETTI M. Soft robotics:Technologies and systems pushing the boundaries of robot abilities[J]. Science Robotics,2016,1(1):eaah3690. [8] BALASUBRAMANIAN S,WARD J,SUGAR T,et al. Characterization of the dynamic properties of pneumatic muscle actuators[C]//ICORR 2007. IEEE 10th International Conference on Rehabilitation Robotics,2007:764-770. [9] RUS D,TOLLEY M. Design fabrication and control of soft robots[J]. Nature,2015,521(7553):467-475. [10] LEE C,KIM M,KIM Y J,et al. Soft robot review[J]. International Journal of Control Automation & Systems,2017,15(1):3-15. [11] 梁旭,王卫群,侯增广,等. 康复机器人的人机交互控制方法[J]. 中国科学:信息科学,2018,48(1):24-46. LIANG Xu,WANG Weiqun,HOU Zengguang et al.Human-machine interactive control method of rehabilitation robot[J]. Science in China:Information Science,2018,48(1):24-46. [12] 黄骐云. 多模态人机接口及其残疾人辅助应用研究[D].广州:华南理工大学,2019. HUANG Qiyun. Research on multi-modal human-machine interface and its assistance application for the disabled[D]. Guangzhou:South China University of Technology,2019. [13] 易金花,喻洪流,张颖,等. 中央驱动式上肢康复机器人运动学建模与分析[J]. 生物医学工程学杂志,2015,32(6):1196-1201. YI Jinhua,YU Hongliu,ZHANG Ying,et al. Kinematics modeling and analysis of central driven upper limb rehabilitation robot[J]. Journal of Biomedical Engineering,2015,32(6):1196-1201. [14] 张泰略,李晋川,邱越,等. 基于脑-肌电信号的新型假肢控制模式的实验研究[J]. 医疗卫生装备,2020,41(7):36-40. ZHANG Tailue,LI Jinchuan,QIU Yue,et al. Experimental study of a new prosthetic control mode based on brain-electromyography signals[J]. Medical and Medical Equipment,2020,41(7):36-40. [15] CHALODHORN R,GRIMES D,GROCHOW K. Learning to walk through imitation[C]//Proceedings of the 20th International Joint Conference on Artifical Intelligence,2007:2084-2090. [16] GRIMES D,CHALODHORN R,RAO R. Dynamic imitation in a humanoid robot through nonparametric probabilistic inference[C]//Proceedings of Robotics:Science and Systems,2006:1. [17] MACIEJASZ P,ESCHWEILER J,Gerlach-Hahn K,et al. A survey on robotic devices for upper limb rehabilitation[J]. Journal of Neuroengineering and Rehabilitation,2014,11:10. [18] 闫继宏,石培沛,张新彬,等. 软体机械臂仿生机理、驱动及建模控制研究发展综述[J]. 机械工程学报,2018,54(15):1-14. YAN Jihong,SHI Peipei,ZHANG Xinbin,et al. Review of biomimetic mechanism,actuation,modeling and control in soft manipulators[J]. Journal of Mechanical Engineering,2018,54(15):1-14. [19] 黄海. 基于人机交互力的下肢外骨骼控制技术研究[D]. 哈尔滨:哈尔滨工业大学,2019. HUANG Hai. Research on lower limb exoskeleton control technology based on human-computer interaction[D]. Harbin:Harbin Institute of Technology,2019. [20] 潘泉,于昕,程咏梅. 信息融合理论的基本方法与进展[J]. 自动化学报,2003(4):599-615. PAN Quan,YU Xin,CHENG Yongmei. Basic methods and progress of information fusion theory[J]. Acta Automatica Sinica,2003(4):599-615. [21] HUO W,MOHAMMED S,MORENO J C,et al. Lower limb wearable robots for assistance and rehabilitation:A state of the art[J]. IEEE Systems Journal,2014,1:1-14,2014. [22] 张晓玉. 我国智能辅助器具科技创新的现状与发展[J].中国康复理论与实践,2013,19(5):401-403. ZHANG Xiaoyu. The status quo and development of technological innovation of intelligent assistive devices in my country[J]. Chinese Rehabilitation Theory and Practice,2013,19(5):401-403. [23] AMIGO L E,FERNANDEZ Q,GIRALT X. Study of patient-orthosis interaction forces in rehabilitation therapies[C]//2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. [24] BLAYA J A,HERR H. Adaptive control of a variable-impedance ankle foot orthosis to assist drop-foot gait[J]. IEEE Transactions Neural System and Rehabilitation Engineering,2014,12(1):24-31. [25] BARTON G J,VANRENTERGHEM J,LEES A. A method for manipulating a movable platform's axes of rotation:A novel use of the CAREN system[J]. Gait and Posture,2006,24:510-514. [26] JAMWAL P K,XIE S Q,HUSSAIN S,et al. An adaptive wearable parallel robot for the treatment of ankle injuries,[C]//IEEE/ASME Transactions on Mechatronics,2014,19:64-75. [27] BELLMANN M,SCHMALZ T,BLUMENTRITT S. Comparative biomechanical analysis of current microprocessor-controlled prosthetic knee joints[J]. Arch Phys Med Rehabil,2010,91:644-652. [28] ROSSI D,VITIELLO N,LENZI T. Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface[J]. Sensors,2011,11:207-227. [29] COLLINS S H,WIGGIN M B,SAWICKI G S,Reducing the energy cost of human walking using an unpowered exoskeleton[J]. Nature,2015,522:212-215. [30] DARVISH K,BRUNO B,SIMETTI E,et al. An adaptive human-robot cooperation framework for assemblylike tasks[C]//Proceedings of International Conference of the Italian Association for Artificial Intelligence. Genova,Italy,2016:45-50. [31] OSBOR N,LUKE E. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain[J]. Science Robotics,2018,3:eaat3818. [32] BEKIROGLU Y,LAAKSONEN J,JORGENSEN J A,et al. Assessing grasp stability based on learning and haptic data[J]. IEEE Transactions on Robotics,2011,27(3):616-629. [33] HUANG H,LI T,BRUSCHINI C,et al. EMG pattern recognition using decomposition techniques for constructing multi class classifiers[C]//IEEE International Conference on Biomedical Robotics and Biomechatronics,Singapore,2016:1296-1301. [34] KADROLKAR A,IV F. Intent recognition of torso motion using wavelet transform feature extraction and linear discriminant analysis ensemble classification[J]. Biomedical Signal Processing & Control,2017,38(1):250-264. [35] YAGJOUB D,SIAMAK N,MOHAMMAD R,et al. A prosthetic knee joint inspired from musculoskeletal system David Moser[J]. Biocybernetics and Biomedical Engineering,2013,33:118-124. [36] 王启宁,郑恩昊,许东方. 基于非接触式电容传感的人体运动意图识别[J]. 机械工程学报,2019,55(11):19-27. WANG Qining,ZHENG Endong,XU Dongfang. Human motion intention recognition based on non-contact capacitive sensing[J]. Journal of Mechanical Engineering,2019,55(11):19-27. [37] 赵晓东,刘作军,陈玲玲,等. 下肢假肢穿戴者跑动步态识别方法[J]. 浙江大学学报,2018,52(10):1980-1988. ZHAO Xiaodong,LIU Zuojun,CHEN Lingling,et al. Recognition method for running gait of lower limb prosthetic wearers[J]. Journal of Zhejiang University,2018,52(10):1980-1988. [38] SU B Y,WANG J,LIU S Q,et al. A CNN-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2019,27(5):1032-1042. [39] 马跃. 下肢外骨骼机器人人机协同控制策略研究[D].中国科学院大学(中国科学院深圳先进技术研究院),2020. MA Yue. Research on human-machine cooperative control strategy of lower limb exoskeleton robot[D]. University of Chinese Academy of Sciences (Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences),2020. [40] HANG T. Symbiotic man-machine interactions in wearable exoskeletons to enhance mobility for paraplegics[J]. European Union,Seventh Framework Programme,2013,10:661626. [41] SHOKUR S,GALLO S,MOIOLI R C,et al. Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback[J]. Sci. Rep.,2016,6:3229. [42] ROSE C G,O'MALLEY M K. Hybrid rigid-soft hand exoskeleton to assist functional dexterity[J]. IEEE Robotics and Automation Letters,2019,4(1):73-80. [43] DALY J,WOLPAW J. Brain-computer interfaces in neurologicalrehabilitation[J]. Lancet Neurology,2008,7(11):1032-1043. [44] BUNDY D,SOUDERS L,BARANYAI K,et al. Contralesional brain-computerinterface control of a powered exoskeleton for motor recovery in chronic strokesurvivors[J]. Stroke,2017,48(7):1908-1915. [45] VÁRKUTI B,GUAN C,PAN Y,et al. Resting state changes in functionalconnectivity correlate with movement recovery for BCI and robot-assistedupper-extremity training after stroke[J]. Neurorehabilitation and NeuralRepair,2013,27(1):53-62. [46] LI L,JING W,XU G,et al. The study of object-oriented motor imagerybased on EEG suppression[J]. Plos One,2015,10(12):e0144256. [47] WHYTE J,DIJKERS MP,HART T,et al. The importance of voluntarybehavior in rehabilitation treatment and outcomes[J]. Archives of Physicalmedicine and Rehabilitation,2019,100(1):156-163. [48] ZEILIG G,WEINGARDEN H,ZWECKER M. Safety and tolerance of the ReWalkTM exoskeleton suit for ambulation by people with complete spinal cord injury:a pilot study[J]. Journal of Spinal Cord Medicine,2012,35(2):96-101. [49] PAN Y T,LAMB Z,MACIEVICH J. A vibrotactile feedback device for balance rehabilitation in the EksoGTTM robotic exoskeleton[C]//IEEE International Conference on Biomedical Robotics and Biomechatronics. Enschede,Netherlands,2018:569-576. [50] CHEN S,LI J,SHUAI Mei. First multicenter clinical trial of China's domestically designed powered exoskeleton assisted walking in patients with paraplegia[J]. Annals of Physical and Rehabilitation Medicine,2018,61:e495. [51] HUANG Rui,CHENG Hong,QIU Jing,et al. Learning physical human-robot interaction with coupled cooperative primitives for a lower exoskeleton[J]. IEEE Transactions on Automation Science and Engineering,2019(1):1-9. [52] CHEN Qiming,CHENG Hong,YUE Chunfeng,et al. Dynamic balance gait for walking assistance exoskeleton[J]. Applied Bionics and Biomechanics,2018(1):doi.org/10.1155/2018/7847014. [53] MAKIN T R,De VIGNEMONT F,Faisal A A. Neurocognitive barriers to the embodiment of technology[J]. Nature Biomedical Engineering,2017,1(1):14. [54] SARAH S. Youbionic goes beyond augmented reality to augmented human with new 3D printed double hand device[J]. 3D Printing Robotics,2017,2:48-57. [55] PENALOZA C I,NISHIO S. BMI control of a third arm for multitasking[J]. Science Robotics,2018,3(20):eaat1228. [56] LESSARD S,PANSODTEE P,ROBBINS A,et al. A soft exosuit for flexible upper-extremity rehabilitation[J]. IEEE Trans. Neur. Syst. Reh.,2018,26(8):1604-1617. [57] JULIAN W,HOWIE C. Task-specifific manipulator design and trajectory synthesis[J]. IEEE Robotics and AutomationLetters,2018,1:2890206. [58] CATHERINE V,JEFF D,LOUIS-PHILIPPE L,et al. Multifunctional 3-DOF wearable supernumerary robotic arm based on magnetorheological clutches[J]. ICRA 2020(1):3211-3223. [59] MOHAMMED A,THOMAS H,MOHAMED K,et al. Orochi:Investigating requirements and expectations for multipurpose daily used supernumerary robotic limbs[C]//AH2019:Augmented Human International Conference,2019Reims,France. 2019:231-242. [60] GEORGE P,MINAS V,LIAROKAPIS G. Open-source,anthropomorphic,underactuated robot hands with a selectively lockable differential mechanism:Towards affordable prostheses[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Hamburg,Germany,2015:661-672. [61] SALMINGER S. Long-term implantof intramuscular sensors and nerve transfers for wireless control of roboticarms in above-elbow amputees[J]. Science Robotics,2019(4):eaaw6306. [62] GEORGE J A,KLUGER D T,DAVIS T S,et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand[J]. Science Robotics,2019,4(32):eaax2352. [63] PHILIP P. A regenerative peripheral nerve interface allows real-time control of an artificial hand inupper limb amputees[J]. Science Translational Medicine,2020,12:533. [64] WANG T,FENG Z,WANG C,et al. Real-time investigation of interactions between nanoparticles and cell membrane model[J]. Science Robotics,2018,164:70-77. [65] MAURICE P,CAMERNIK J,GORJAN D,et al. Objective and subjective effects of a passive exoskeleton on overhead work[J]. Science Robotics,2020,28(1):152-164. [66] CHRIS I,CHAR P,BECHL I. Task-specific grasp selection for underactuated hands[C]//IEEE International Conference on Robotics and Automation,2014,32(2):66-75. [67] Merad M. Assessment of an automatic prosthetic elbow control strategy using residual limb motion for transhumeral amputated individuals with socket or osseointegrated prostheses[J]. IEEE Transactions on Medical Robotics and Bionics,2020,2(1):38-49. [68] HUA Q,SUN J,LIU H,et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing[J]. Nat Commun,2018,9:244. [69] SUN B,DAI Q,CHENG G. Electronic skin design methods applied to capsule robot[C]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO),Dali,China,2019:252-256. [70] 侯增广,赵新刚,程龙,等. 康复机器人与智能辅助系统的研究进展[J]. 自动化学报,2016,42(12):1765-1779. HOU Zengguang,ZHAO Xingang,CHENG Long,et al. Research progress of rehabilitation robots and intelligent auxiliary systems[J]. Acta Automatica Sinica,2016,42(12):1765-1779. [71] TANG Z C,YU H N,CANG S. Impact of load variation on joint angle estimation from surface EMG signals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2016,24(12):1342-1350. [72] ALEXANDER O,NEBOJS A M,ANDERS B. Exploiting the intertemporal structure of the upper-limb sEMG:Comparisons between an LSTM network and cross-sectional myoelectric pattern recognition methods[C]//201941st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),2019:6611-6615. [73] ROMERO-HERNANDEZ P,ASIAIN J D L,MANUEL GRAÑA. Deep learning prediction of gait based on inertial measurements[M]. Springer,2019. [74] FERRARI A,BERGAMINI L,GUERZONI G. Gait-based diplegia classification using LSMT networks[J]. Journal of Healthcare Engineering,2019,20:213-221. [75] DHAWAN A S,MUKHERJEE B,PATWARDHAN S,et al. Proprioceptive sonomyographic control:A novel method for intuitive and proportional control of multiple degrees-of-freedom for individuals with upper extremity limb loss[J]. Sci. Rep.,2019(1):7. [76] HWANGBO J,LEE J,DOSOVITSKIY A,et al. Learning agile and dynamic motor skills for legged robots[J]. Science Robotics,2019,4(26):1. [77] YOUNG A J,SIMON A M,FEY N P,et al. Intent recognition in a powered lower limb prosthesis using time history information[J]. Annals of Biomedical Engineering,2014,42(3):631-641. [78] FERRER G,SANFELIU A. Bayesian human motion intentionality prediction in urban environments[J]. Pattern Recognition Letters,2014,44:134-140. [79] OLGA V D,REINDER H A,BONGERS R M. The i-LIMB hand and the DMC plus hand compared:A case report[J]. Prosthetics and Orthotics International,2010,34(2):216-220. [80] HUA Y,FAN J,LIU G,et al. A novel weight-bearing lower limb exoskeleton based on motion intention prediction and locomotion state identification[J]. IEEE Access,2019(7):37620-37638. |