[1] DURSUN T,SOUTIS C. Recent developments in advanced aircraft aluminium alloys[J]. Materials and Design,2014,56:862-871. [2] XU L,WANG Q,ZHOU M. Micro-crack initiation and propagation in a high strength aluminum alloy during very high cycle fatigue[J]. Materials Science & Engineering A,2018,715:404-413. [3] CAO B,SHAEFFER M,CADEL D,et al. An analysis of strengthening mechanisms and rate-dependence in a high strength aluminum alloy[J]. Journal of Dynamic Behavior of Materials,2017,4:6-17. [4] GONZALO M,DOMINGUEZ A,JORGE L,et a1. Fatigue endurance and crack propagation under rotating bending fatigue tests on aluminum alloy AISI 6063-T5 with controlled corrosion attack[J]. Engineering Fracture Mechanics,2012,93:119-131. [5] ZHANG H X,WU G H,YAN Z F,et al. An experimental analysis of fatigue behavior of AZ31B magnesium alloy welded joint based on infrared thermography[J]. Materials and Design,2014,55:785-791. [6] WANG X,SHI Q,WANG X,et al. The influences of precrack orientations in welded joint of Ti-6Al-4V on fatigue crack growth[J]. Materials Science & Engineering A,2010,527:1008-1015. [7] 张红霞,吴广贺,闫志峰,等. 5A06铝合金及其焊接接头的疲劳断裂行为[J]. 中国有色金属学报,2013(2):327-335. ZHANG Hongxia,WU Guanghe,YAN Zhifeng,et al. Fatigue fracture behavior of 5A06 aluminum alloy and its welded joint[J]. The Chinese Journal of Nonferrous Metals,2013(2):327-335. [8] 吴圣川,张卫华,焦汇胜,等. 激光-电弧复合焊接7075-T6铝合金接头软化行为[J]. 中国科学:技术科学,2013(7):785-792. WU Shengchuan,ZHANG Weihua,JIAO Huisheng,et al. Soften behavior of 7075-T6 aluminum alloy joint by laser-arc composite welding[J]. Scientia Sinica Technologica,2013(7):785-792. [9] CHEN L,HU Y N,HE E G,et al. Microstructural and failure mechanism of laser welded 2A97 Al-Li alloys via synchrotron tomography[J]. International Journal of Lightweight Materials and Manufacture,2018,1:169-178. [10] FU B,QIN G,MENG X,et al. Microstructure and mechanical properties of newly developed aluminum-lithium alloy 2A97 welded by fiber laser[J]. Materials Science & Engineering A,2014,617:1-11. [11] DEV S,MURTY B S,RAO K P. Effects of base and filler chemistry and weld techniques on equiaxed zone formation in Al-Zn-Mg alloy welds[J]. Science and Technology of Welding and Joining,2008,13(7):598-606. [12] GUTIERREZ A,LIPPOLD JC. A proposed mechanisum for equiaxed grain formation along the fusion boundary in aluminum-copper-lithium alloys[J]. Welding Journal,1998,77(3):123-132. [13] LIN D C,WANG G X,SRIVATSAN T S. A mechanism for the formation of equiaxed grains in welds of aluminum-lithium alloy 2090[J]. Materials Science & Engineering A,2003,351(1-2):304-309. [14] TÓTH L,YAREMA S Y. Formation of the science of fatigue of metals. Part 1. 1825-1870[J]. Materials Science,2006,42(5):673-680. [15] LL Z M,WANG Q G,LUO A A,et al. Fatigue strength dependence on the ultimate tensile strength and hardness in magnesium alloys[J]. International Journal of Fatigue,2015,80:468-476. [16] PANG J C,LI S X,WANG Z G,et al. General relation between tensile strength and fatigue strength of metallic materials[J]. Materials Science & Engineering A,2013,564:331-341. [17] CASAGRANDE A,CAMMAROTA G P,MICELE L. Relationship between fatigue limit and Vickers hardness in steels[J]. Materials Science & Engineering A,2011,528(9):3468-3473. [18] MURAKAMI,YUKITAKA. Effects of small defects and nonmetallic inclusions on the fatigue strength of metals[J]. Key Engineering Materials,1991,51-52:37-42. [19] MU P,NADOT Y,NADOT-MARTIN C,et al. Influence of casting defects on the fatigue behavior of cast aluminum AS7G06-T6[J]. International Journal of Fatigue,2014,63(4):97-109. [20] BUFFIÈRE J-Y,SAVELLI S,JOUNEAU P H,et al. Experimental study of porosity and its relation to fatigue mechanisms of model Al-Si7-Mg0.3 cast Al alloys[J]. Materials Science & Engineering A,2001,316(1-2):115-126. [21] ZHANG B,CHEN W,POIRIER D R. Effect of solidification cooling rate on the fatigue life of A356.2-T6 cast aluminium alloy[J]. Fatigue & Fracture of Engineering Materials & Structures,2010,23(5):417-423. [22] SERRANO MUNOZ I. Influence of casting defects on the fatigue behaviour of an A357-T6 aerospace alloy[D]. Lyon:l'Institut National des Sciences Appliquées de Lyon,2014. [23] YADOLLAHI A,SHAMSAEI N. Additive manufacturing of fatigue resistant materials:challenges and opportunities[J]. International Journal of Fatigue,2017,98:14-31. [24] XU Z Q,WEN W,ZHAI T G. Effects of pore position in depth on stress/strain concentration and fatigue crack initiation[J]. Metallurgical and Materials Transactions A,2012,43(8):2763-2770. [25] TODA H,MASUDA S,BATRES R,et al.Statistical assessment of fatigue crack initiation from sub-surface hydrogen micropores in high-quality die-cast aluminum[J].Acta Materialia,2011,59(12):4990-4998. [26] 吴圣川,朱宗涛,李向伟. 铝合金的激光焊接及性能评价[M]. 北京:国防工业出版社,2014. WU Shengchuan,ZHU Zongtao,LI Xiangwei. Laser welding of aluminum alloys and the performance evaluation[M]. Beijing:National Defense Industry Press,2014. [27] GIGLIO M,BERETTA S,MARIANI U,et al. Defect tolerance assessment of a helicopter component subjected to multiaxial load[J]. Engineering Fracture Mechanics,2010,77(13):2479-2490. [28] GARBA C,LEITNER M,STAUDER B,et al. Application of modified Kitagawa-Takahashi diagram for fatigue strength assessment of cast Al-Si-Cu alloys[J]. International Journal of Fatigue,2018,111:256-268. [29] HADDAD M H E,SMITH K N,TOPPER T H. Fatigue crack propagation of short cracks[J]. Journal of Engineering Materials and Technology,1979,110(1):42-46. [30] MURAKAMI,ENDO. Effects of defects,inclusions and inhomogeneities on fatigue strength[J]. International Journal of Fatigue,1994,16(3):163-182. [31] BERETTA S,ROMANO S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes[J]. International Journal of Fatigue,2016,94:178-191. [32] PETERS J O,BOYCE B L,CHEN X,et al. On the application of the Kitagawa-Takahashi diagram to foreign-object damage and high-cycle fatigue[J]. Engineering Fracture Mechanics,2002,69(13):1425-1446. [33] 吴圣川,胡雅楠,康国政. 材料疲劳损伤行为的先进光源表征技术[M]. 北京:科学出版社,2018. WU Shengchuan,HU Yanan,KANG Guozheng. Characterization of material fatigue damage via advanced light source tomography[M]. Beijing:Science Press,2018. [34] TENKAMP J,KOCH A,KNORRE S,et al. Defect-correlated fatigue assessment of A356-T6 aluminum cast alloy using computed tomography based Kitagawa-Takahashi diagrams[J]. International Journal of Fatigue,2018,108:25-34. [35] WU S C,SONG Z,KANG G Z,et al. The Kitagawa-Takahashi fatigue diagram to hybrid weldedAA7050 joints via synchrotron X-ray tomography[J]. International Journal of Fatigue,2019,125:210-221. [36] 胡雅楠,吴圣川,宋哲,等. 激光复合焊接7020铝合金的疲劳性能及损伤行为[J]. 中国激光,2018,45(3):198-207. HU Yanan,WU Shengchuan,SONG Zhe,et al. Fatigue property and fracture behavior of 7020 aluminum alloys welded by laser-mig hybrid welding[J]. Chinese Journal of Lasers,2018,45(3):198-207. [37] 杨晓益,陈辉,王秋影,等. A7N01P-T4铝合金激光-MIG复合焊接头微区性能[J]. 焊接学报,2016,37(8):114-118. YANG Xiaoyi,CHEN Hui,WANG Qiuying,et al. Micro-zone performance of laser-MIG hybrid welded A7N01P-T4 Al alloy joints[J]. Transactions of the China Welding Institution,2016,37(8):114-118. [38] HU Y N,WU S C,CHEN L. Review on failure behaviors of fusion welded Al alloys due to fine equiaxed zone[J]. Engineering Fracture Mechanics,2019,208:45-71. [39] WU S C,YU C,YU P S,et al. Corner fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computed microtomography[J]. Materials Science & Engineering A,2016,651:604-614. [40] 喻程,吴圣川,胡雅楠,等. 铝合金熔焊微气孔的三维同步辐射X射线成像[J]. 金属学报,2015,51(2):159-168. YU Cheng,WU Shengchuan,HU Yanan,et al. Three-dimensional imaging of gas pores in fusion welded Al alloys by synchrotron radiation X-ray microtomography[J]. Acta Metallurgica Sinica,2015,51(2):159-168. [41] WU S C,HU Y N,SONG X P,et al. On the microstructural and mechanical characterization of hybrid laser-welded Al-Zn-Mg-Cu alloys[J]. Journal of Materials and Engineering and Performance,2015,24(4):1540-1550. [42] WALKER K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[C]//American Society for Testing and Materials. Effects of Environment and Complex Load History on Fatigue Life,29 September-4 October,1968, West Conshohocken. PA:ASTM,1970,462:1. [43] DOWLING N E,CALHOUN C A,ARCARI A. Mean stress effects in stress-life fatigue and the Walker equation[J]. Fatigue & Fracture of Engineering Materials & Structures,2010,32(3):163-179. [44] WU S C,YU X,ZUO R Z,et al. Porosity,element loss and strength model on softening behavior of hybrid laser arc welded Al-Zn-Mg-Cu alloy with synchrotron radiation analysis[J]. Welding Journal,2013,92(3):64-71. [45] 胡雅楠,吴圣川,张思齐,等. 基于三维X射线成像的激光复合焊接7020铝合金的组织与力学特性演变[J]. 中国激光,2016,43(1):1-9. HU Yanna,WU Shengchuan,ZHANG Siqi,et al. Three-dimensional X-ray micro-tomography based microstructure and mechanical performance of hybrid laser welded AA7020[J]. Chinese Journal of Lasers,2016,43(1):1-9. [46] LI X D,EDWARDS L. Theoretical modelling of fatigue threshold for aluminium alloys[J]. Engineering Fracture Mechanics,1996,54(1):35-48. [47] WILKINSON A J,ROBERTS S G,HIRSCH P B. Modelling the threshold conditions for propagation of stage I fatigue cracks[J]. Acta Materialia,1998,46(2):379-390. [48] LI X D. Dislocation pile-up model of fatigue thresholds for 2024- and 7075-alike aluminium alloys[J]. Theoretical and Applied Fracture Mechanics,1996,24(2):165-179. [49] HU Y N,WU S C,SONG Z,et al. Effect of microstructural features on the failure behavior of hybrid laser welded AA7020[J]. Fatigue & Fracture of Engineering Materials & Structures,2018,41(9):1-14. [50] ROMANO S,BRANDÃO A,GUMPINGER J,et al. Qualification of AM parts:Extreme value statistics applied to tomographic measurements[J]. Materials & Design,2017,131:32-48. [51] TEBALDINI M,PETROGALLI C,DONZELLA G,et al. A356-T6 wheels Influence of casting defects on fatigue design[J]. Fatigue & Fracture of Engineering Materials & Structures,2018,41(8):1784-1793. [52] WU S C,XU Z W,KANG G Z,et al. Probabilistic fatigue assessment for high-speed railway axles due to foreign object damage[J]. International Journal of Fatigue,2018,117:90-100. |