[1] 陈学东,范志超,陈永东,等. 我国压力容器设计制造与维护的绿色化与智能化[J]. 压力容器,2017,34(11):12-27. CHEN Xuedong,FAN Zhichao,CHEN Yongdong,et al. Green and intelligent design,manufacturing and maintenance of pressure vessels in China[J]. Pressure Vessel Technology,2017,34(11):12-17. [2] DAVID J Smith. Reliability maintainability and risk-practical methods for engineers including reliability centered maintenance and safety related systems[M]. Burlington:Elsevier Butterworth-Heinemann,2005. [3] 朱建新,陈学东,艾志斌,等. 我国石化装置风险管理体系建设设想[J]. 石油化工设备,2009,38(6):45-49. ZHU Jianxin,CHEN Xuedong,AI Zhibin,et al. Consideration on the construction of risk management system for Chinese petrochemical plants[J]. Petrochemical Equipment,2009,38(6):45-49. [4] 陈学东,范志超,江慧丰,等. 复杂加载条件下压力容器典型用钢疲劳蠕变寿命预测方法[J]. 机械工程学报,2009,45(2):81-87. CHEN Xuedong,FAN Zhichao,JIANG Huifeng,et al. Creep-fatigue life prediction methods of pressure vessel typical steels under complicated loading conditions[J]. Journal of Mechanical Engineering,2009,45(2):81-87. [5] 刘浩然,丁攀,郭长江,等. 基于贝叶斯算法的中文垃圾邮件过滤系统研究[J]. 通信学报,2018,39(12):151-159. LIU Haoran,DING Pan,GUO Changjiang,et al. Study on Chinese spam filtering system based on Bayes algorithm[J]. Journal on Communications,2018,39(12):151-159. [6] 赵申坤,姜潮,龙湘云. 一种基于数据驱动和贝叶斯理论的机械系统剩余寿命预测方法[J]. 机械工程学报,2018,54(12):115-124. ZHAO Shenkun,JIANG Chao,LONG Xiangyun. Remaining useful life estimation of mechanical systems based on the data-driven method and Bayesian theory[J]. Journal of Mechanical Engineering,2018,54(12):115-124. [7] 刘东,王昕,黄建荧,等. 基于贝叶斯网络的水电机组振动故障诊断研究[J]. 水力发电学报,2019,38(2):112-120. LIU Dong,WANG Xin,HUANG Jianying,et al. Vibration fault diagnosis for hydro-power units based on Bayesian network[J]. Journal of Hydroelectric Engineering,2019,38(2):112-120. [8] 徐宾刚,屈梁生,陶肖明. 转子故障贝叶斯诊断网络的研究[J]. 机械工程学报,2004,40(1):66-72. XU Bingang,QU Liangsheng,TAO Xiaoming. Bayesian network framework for rotor fault diagnosis[J]. Journal of Mechanical Engineering,2004,40(1):66-72. [9] MD T,FAISAL K,SYED I. Fault detection and pathway analysis using a dynamic Bayesian network[J]. Chemical Engineering Science,2019,195:777-790. [10] 徐小力,刘秀丽,蒋章雷,等. 基于主观贝叶斯推理的多传感器分布式故障检测融合方法[J]. 机械工程学报,2015,51(7):91-98. XU Xiaoli,LIU Xiuli,JIANG Zhanglei,et al. Multi-sensor distributed fault detection method based on subjective Bayesian reasoning[J]. Journal of Mechanical Engineering,2015,51(7):91-98. [11] PAULA R,HOSSAM A,PETRÔNIO V,et al. A new methodology for multiple incipient fault diagnosis in transmission lines using QTA and Naïve Bayes classifier[J]. International Journal of Electrical Power & Energy Systems,2018,103:326-346. [12] MURALIDHARAN V,UGUMARAN V. A comparative study of naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis[J]. Appl. Soft Computing,2012,12(8):2023-2029. [13] ABDOLRAHMAN P,STEPHEN J,THAHIRAH J,et al. Evolutionary multi-objective fault diagnosis of power transformers[J]. Swarm and Evolutionary Computation,2017,36:62-75. [14] 陈学东,范志超,崔军,等. 极端条件重大承压设备的设计、制造与维护[J]. 机械工程学报,2013,49(22):66-75. CHEN Xuedong,FAN Zhichao,CUI Jun,et al. Risk based design,manufacture and maintenance of extreme pressure equipment[J]. Journal of Mechanical Engineering,2013,49(22):66-75. [15] CHANG C,LEE H,LIU H. A review of artificial intelligence algorithms used for smart machine tools[J]. Inventions,2018,3(3):1-28. [16] 高金吉. 机器故障诊断与自愈化[M]. 北京:高等教育出版社,2012. GAO Jinji. Machine failure diagnosis & self-healing[M]. Beijing:High Education Press,2012. [17] DUA D,GRAFF C. Mechanical Analysis Data Set[EB/OL]. Irvine:UCI Machine Learning Repository,1990[2019-03-11]. https://archive.ics.uci.edu/ml/datasets/Mechanical+Analysis. [18] Research Center of Sciences of Communication. Steel plates faults data set[EB/OL]. Irvine:UCI Machine Learning Repository,2010[2019-03-11]. https://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults. [19] 盛骤,谢式千,潘承毅. 概率论与数理统计[M]. 北京:高等教育出版社,1995 SHENG Zhou,XIE Shiqian,PAN Chengyi. Probability and mathematical statistics[M]. Beijing:High Education Press,1995 [20] CHRISTOPHER M. Pattern recognition and machine learning[M]. Singapore:Springer, 2006. |