[1] 金学松, 杜星, 郭俊, 等. 钢轨打磨技术研究进展[J]. 西南交通大学学报, 2010, 45(1):1-11. JIN Xuesong, DU Xing, GUO Jun, et al. State of arts of research on rail grinding[J]. Journal of Southwest Jiaotong University, 2010, 45(1):1-11. [2] 刘月明, 李建勇, 蔡永林, 等. 钢轨打磨技术现状和发展趋势[J]. 中国铁道科学, 2014, 35(4):29-37. LIU Yueming, LI Jianyong, CAI Yonglin, et al. Current state and development trend of rail grinding technology[J]. China Railway Science, 2014, 35(4):29-37. [3] ZHI S, ZAREMBSKI A M, LI J Y, et al. Towards a better understanding of the rail grinding mechanism[C]//ASME 2013 Rail Transportation Division Fall Technical Conference, Altoona:American Society of Mechanical Engineers, Rail Transportation Division RTD, 2013:15-17. [4] 智少丹, 李建勇, 樊文刚, 等. 钢轨打磨接触线模型研究[J]. 铁道学报, 2013, 35(10):94-99. ZHI Shaodan, LI Jianyong, FAN Wengang, et al. Research on contact line model for rail grinding[J]. Journal of the China Railway Society, 2013, 35(10):94-99. [5] 郭战伟. 基于轮轨蠕滑最小化的钢轨打磨研究[J]. 中国铁道科学, 2011, 32(6):9-15. GUO Zhanwei. Study of rail grinding based on wheel rail creep minimization[J]. China Railway Science, 2011, 32(6):9-15. [6] ZHANG X, KUHLENKOTTER B, KNEUPNER K. An efficient method for solving the Signorini problem in the simulation of free-form surfaces produced by belt grinding[J]. International Journal of Machine Tools & Manufacture, 2005, 45(6):641-648. [7] ZHANG X, KNEUPNER K, KUHLENKOTTER B. A new force distribution calculation model for high-quality production processes[J]. International Journal of Advanced Manufacturing Technology, 2005, 27(7):726-732. [8] REN X, KUHLENKOTTER B, MULLER H. Simulation and verification of belt grinding with industrial robots[J]. International Journal of Machine Tools & Manufacture, 2006, 46(7-8):708-716. [9] REN X, CABARAVDIC M, ZHANG X, et al. A local process model for simulation of robotic belt grinding[J]. International Journal of Machine Tools & Manufacture, 2007, 47(6):962-970. [10] 刘斐, 王伟, 王雷, 等. 接触轮变形对机器人砂带磨削深度的影响[J]. 机械工程学报, 2017, 53(5):86-92. LIU Fei, WANG Wei, WANG Lei, et al. Effect of contact wheel's deformation on cutting depth for robotic belt grinding[J]. Journal of Mechanical Engineering, 2017, 53(5):86-92. [11] KHELLOUKI A, RECH J, ZAHOUANI H. The effect of abrasive grain's wear and contact conditions on surface texture in belt finishing[J]. Wear, 2007, 263(1-6):81-87. [12] KHELLOUKI A, RECH J, ZAHOUANI H. Influence of the belt-finishing process on the surface texture obtained by hard turning[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture, 2007, 221(7):1129-1137. [13] 黄云, 黄智. 现代砂带磨削技术及工程应用[M]. 重庆:重庆大学出版社, 2009. HUANG Yun, HUANG Zhi. Modern abrasive belt grinding technology and engineering application[M]. Chongqing:Chongqing University Press, 2009. [14] 吴昌林, 丁和艳, 陈义. 材料去除深度与磨粒的关系建模方法研究[J]. 中国机械工程, 2011, 22(3):300-304. WU Changlin, DING Heyan, CHEN Yi. Research on modeling method of relation between abrasive grain and material removal depth[J]. China Mechanical Engineering, 2011, 22(3):300-304. [15] 赵燕涛. 自由曲面变压力砂带磨削相关技术的研究[D]. 沈阳:东北大学, 2014. ZHAO Yantao. Research on the related technology of variable pressure belt grinding on free——form surface[D]. Shenyang:Northeastern University, 2014. [16] WANG Y J, HUANG Y, CHEN Y X, et al. Model of an abrasive belt grinding surface removal contour and its application[J]. International Journal of Advanced Manufacturing Technology, 2016, 82(9-12):2113-2122. [17] 王荣全. 面向钢轨打磨的砂带磨削过程建模与实验研究[D]. 北京:北京交通大学, 2016. WANG Rongquan. The modeling and experimental research of belt-grinding process in rail[D]. Beijing:Beijing Jiaotong University, 2016. |