[1] 龙震海,王西彬,刘志兵. 高速铣削难加工材料时硬质合金刀具前刀面磨损机理及切削性能研究[J]. 摩擦学学报,2005,25(1):83-87. LONG Zhenhai,WANG Xibin,LIU Zhibing. Research on wear modes and mechanism of carbide tools in high-speed milling of difficult-to-cut materials[J]. Tribology,2005,25(1):83-87. [2] HONG S Y,DINGY C. Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V[J]. International Journal of Machine Tools & Manufacture,2001,41(8):1417-1437. [3] HONG S Y,BROOMER M. Economic and ecological cryogenic machining of AISI 304 austenitic stainless steel[J]. Clean Products and Processes,2000,2(3):157-166. [4] OBIKAWA T,KAMATA Y,ASANO Y,et al. Micro-liter lubrication machining of Inconel 718[J]. International Journal of Machine Tools & Manufacture,2008,48,1605-1612. [5] WEINERT K,INASAKI I,SUTHERLAND J W,et al. Dry machining and minimum quantity lubrication[J]. CIRP Annals-Manufacturing Technology,2004,53(1):511-537. [6] JEONG W C. Investigation of liquid nitrogen lubrication effects in cryogenic machining[D]. New York:Columbia University,2002. [7] KLOCKET F,EISENBLATTER G. Dry cutting[J]. CIRP Annals,1997,46(1):519-526. [8] FRATILA D. Evaluation of near-dry machining effects on gear milling process efficiency[J]. Journal of Cleaner Production,2009,17(9):839-845. [9] FRATILA D,CAIZAR C. Application of Taguchi method to selection of optimal lubrication and cutting conditions in face milling of AlMg3[J]. Journal of Cleaner Production,2011,19(6-7):640-645. [10] 姜立. 微量润滑的流场分析及应用于外螺纹车削的试验研究[D]. 上海:上海交通大学,2013. JIANG Li. Analysis of flow field for minimum quantity lubrication and experimental study on outer thread turning performances[D]. Shanghai:Shanghai Jiao Tong University,2013. [11] 严鲁涛,袁松梅,刘强.绿色切削高强度钢的刀具磨损及切屑形态[J]. 机械工程学报,2010,46(9):187-192. YAN Lutao,YUAN Songmei,LIU Qiang.Tool wear and chip formation in green machining of high strength steel[J].Journal of Mechanical Engineering,2010,46(9):187-192. [12] 高昆,齐乐华,郁大照,等. 基于复合油雾喷射润滑的飞机钛合金蒙皮原位钻削技术研究[J]. 机械工程学报,2015,51(15):198-204. GAO Kun,QI Lehua,YU Dazhao,et al. Study on the in situ drilling technology used in titanium alloy thin-walled structure of plane based on combined oil mist-jet[J]. Journal of Mechanical Engineering,2015,51(15):198-204. [13] SHERI K,JEAN M D,DANIEL L S,et al. Evaluation of the convective heat transfer coefficient for minimum quantity lubrication (MQL)[J]. Industrial Lubrication and Tribology,2012,64(6):376-386. [14] MAO C,HUANG Y,ZHOU X,et al. The tribological properties of nanofluid used in minimum quantity lubrication grinding[J]. International Journal of Advanced Manufacturing Technology,2014,71(5-8):1221-1228. [15] OBIKAWA T,KAMATA Y,SHINOZUKA J. High-speed grooving with applying MQL[J]. International Journal of Machine Tools & Manufacture,2006,46(14):1854-1861. [16] LIAO Y S,LIN H M,CHEN Y C. Feasibility study of the minimum quantity lubrication in high-speed end milling of NAK80 hardened steel by coated carbide tool[J]. International Journal of Machine Tools & Manufacture,2007,47(11):1667-1676. [17] VAZQUEZ E,KEMMOKU D T,NORITOMI P Y,et al. Computer fluid dynamics analysis for efficient cooling and lubrication conditions in micromilling of Ti6Al4V alloy[J]. Materials and Manufacturing Processes,2014,29(11-12):1494-1501. [18] 张春燕,王贵成,裴宏杰,等. 基于毛细管理论的MQL理论模型及应用[J]. 机械设计与制造,2009(9):62-64. ZHANG Chunyan,WANG Guicheng,PEI Hongjie,et al. MQL theoretical model and application based on capillaries[J]. Machinery Design & Manufacture,2009 (9):62-64. [19] TASDELEN B,THORDENBERG H,OLOFSSON D. An experimental investigation on contact length during minimum quantity lubrication (MQL) machining[J]. Journal of Materials Processing Technology,2008,203 (s1-3):221-231. [20] 吕宏刚. H13钢硬态铣削过程中的刀具磨损及其对表面完整性的影响[D]. 济南:山东大学,2012. LÜ Honggang. Tool wear and its effect on surface integrity in hard milling H13 steel[D]. Jinan:Shandong University,2012. [21] MULYADI I H,BALOGUN V A,MATIVENGA P T. Environmental performance evaluation of different cutting environments when milling H13 tool steel[J]. Journal of Cleaner Production,2015,108:110-120. [22] DUCHOSAL A,SERRA R,LEROY R. Numerical study of the inner canalization geometry optimization in a milling tool used in micro quantity lubrication[J]. Mechanics & Industries,2014,15(5):435-442. [23] DUCHOSAL A,WERDA S,SERRA R,et al. Numerical modeling and experimental measurement of MQL impingement over an insert in a milling tool with inner channels[J]. International Journal of Machine Tools & Manufacture,2015,94:37-47. [24] BALAN A S S,VIJAYARAGHAVAN L,KRISHNAMURTHY R. Computational fluid dynamics analysis for predicting the droplet size in MQL during grinding of super-alloy[C]// Proceedings of the 37th International MATADOR Conference,2013:161-164. [25] REIN M. Phenomena of liquid drop impact on solid and liquid surfaces[J]. Fluid Dynamics Research,1993,12(2):61-93 [26] LEI X,ZHANG W W,NAGEL S R. Drop splashing on a dry smooth surface[J]. Physical Review Letters,2005,94:184505 [27] MARUDA R W,KROLCZYK G M,FELDSHTEIN E,et al. A study on droplets sizes,their distribution and heat exchange for minimum quantity cooling lubrication (MQCL)[J]. International Journal of Machine Tools & Manufacture,2016,100:81-92. [28] 张成良. CMQL油气流场分析及内冷式刀具切削性能评价[D]. 济南:山东大学,2016. ZHANG Chengliang. Oil-air flow field analysis of CMQL and cutting performance evaluation of internal cooling cutters[D]. Jinan:Shandong University,2016. [29] 李武刚. 空气微粒的阻力系数计算及动力学行为分析[J]. 桂林理工大学学报,2011,31(2):314-318. LI Wugang. Air resistance coefficient calculation and analysis for mote dynamic behavior in the air[J]. Journal of Guilin University of Technology,2011,31(2):314-318. [30] 邹林涛. 低温MQL流体动力学分析及冷却、润滑性能研究[D]. 济南:山东大学,2013. ZOU Lintao. Computational fluid dynamic analysis and cooling/lubrication effect of cryogenic minimum quantity lubrication[D]. Jinan:Shandong University,2013. [31] MARUDA R W,KROLCZYK G M,FELDSHTEIN E,et al. A study on droplets sizes,their distribution and heat exchange for minimum quantity cooling lubrication (MQCL)[J]. International Journal of Machine Tools & Manufacture,2016,100:81-92. |