机械工程学报 ›› 2018, Vol. 54 ›› Issue (2): 1-15.doi: 10.3901/JME.2018.02.001
• 特邀专栏:焊接过程测控与数值模拟 • 下一篇
武传松, 孟祥萌, 陈姬, 秦国梁
收稿日期:
2017-05-20
修回日期:
2017-11-05
出版日期:
2018-01-20
发布日期:
2018-01-20
通讯作者:
武传松(通信作者),男,1959年出生,博士,教授,博士研究生导师。主要研究方向为焊接物理、高效焊接工艺过程的数值模拟与测试控制。E-mail:wucs@sdu.edu.cn
作者简介:
孟祥萌,男,1990年出生,博士研究生。主要研究方向为高速电弧焊模拟及工艺。E-mail:xmmengsdu@gmail.com
基金资助:
WU Chuansong, MENG Xiangmeng, CHEN Ji, QIN Guoliang
Received:
2017-05-20
Revised:
2017-11-05
Online:
2018-01-20
Published:
2018-01-20
摘要: 熔焊是目前机械制造业中应用最为广泛的材料连接技术。熔焊过程中的传热与熔池流动行为对于焊缝成形、接头微观组织与服役性能等起着决定性作用。准确地分析和计算熔焊热过程与熔池形态,对于焊接冶金分析、应力变形分析、过程控制及工艺优化等都具有十分重要的意义,也是使焊接工艺从"定性"走向"定量"分析、从"经验"走向"科学"的重要途径。对焊接电弧物理、熔滴过渡、熔池形态、高速焊接熔池传热与流动、等离子弧焊和激光焊接的小孔与熔池动态行为、激光-电弧复合热源焊接热过程的数值模拟研究现状与存在问题进行了评述,讨论了上述前沿领域的研究方向与发展趋势,旨在为实现熔焊工艺优化和过程控制提供理论依据。
中图分类号:
武传松, 孟祥萌, 陈姬, 秦国梁. 熔焊热过程与熔池行为数值模拟的研究进展[J]. 机械工程学报, 2018, 54(2): 1-15.
WU Chuansong, MENG Xiangmeng, CHEN Ji, QIN Guoliang. Progress in Numerical Simulation of Thermal Processes and Weld Pool Behaviors in Fusion Welding[J]. Journal of Mechanical Engineering, 2018, 54(2): 1-15.
[1] 林尚扬. 我国焊接生产现状与焊接技术的发展[J]. 船舶工程,2005,27(5):15-24. LIN Shangyang. Present situation of welding production and development trend of welding technology in China[J]. Ship Engineering,2005,27(5):15-24. [2] 武传松. 焊接热过程与熔池形态[M]. 北京:机械工业出版社,2008. WU Chuansong. Thermal processes and weld pool behaviors of welding[M]. Beijing:China Machine Press,2008. [3] TANAKA M,TERASAKI H,USHIO M,et al. A unified numerical modeling of stationary tungsten-inert-gas welding process[J]. Metallurgical and Materials Transactions A,2002,33(7):2043-2052. [4] TANAKA M,TASHIRO S,SATOH T,et al. Influence of shielding gas composition on arc properties in TIG welding[J]. Science & Technology of Welding & Joining,2013,13(3):225-231. [5] KONISHI K,SHIGETA M,TANAKA M,et al. Numerical study on thermal non-equilibrium of arc plasmas in TIG welding processes using a two-temperature model[J]. Welding in the World,2016,61(1):197-207. [6] KIM W H,FAN H G,NA S J. A mathematical model of gas tungsten arc welding considering the cathode and the free surface of the weld pool[J]. Metallurgical and Materials Transactions B,1997,28(4):679-686. [7] YAMAMOTO K,TANAKA M,TASHIRO S,et al. Metal vapour behaviour in thermal plasma of gas tungsten arcs during welding[J]. Science & Technology of Welding & Joining,2013,13(6):566-572. [8] TANAKA M,YAMAMOTO K,TASHIRO S,et al. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding[J]. Journal of Physics D Applied Physics,2010,43(43):434009. [9] MOUGENOT J,GONZALEZ J J,FRETON P,et al. Argon and Arcal.37 plasma characteristics in a TIG configuration[J]. Journal of Physics D:Applied Physics,2013,46:495203. [10] SCHNICK M,FUESSEL U,HERTEL M,et al. Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX[J]. Frontiers of Materials Science,2011,5(2):98-108. [11] SCHNICK M,FÜSSEL U,HERTEL M,et al. Numerical investigations of the influence of metal vapour in GMA welding[J]. Welding in the World,2011,55(11-12):114-120. [12] MURPHY A B,THOMAS D G. Prediction of arc,weld pool and weld properties with a desktop computer model of metal-inert-gas welding[J]. Welding in the World,2017:623-633. [13] LU F,WANG H P,MURPHY A B,et al. Analysis of energy flow in gas metal arc welding processes through self-consistent three-dimensional process simulation[J]. International Journal of Heat & Mass Transfer,2014,68(1):215-223. [14] WANG L L,LU F G,WANG H P,et al. Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels[J]. Journal of Physics D:Applied Physics,2014,47(46):465202. [15] WANG X,FAQ D,HUANG J,et al. Numerical simulation of arc plasma and weld pool in double electrodes tungsten inert gas welding[J]. International Journal of Heat and Mass Transfer,2015,85:924-934. [16] DING X P,LI H,WEI H L,et al. Numerical analysis of arc plasma behavior in double-wire GMAW[J]. Vacuum,2016,124:46-54. [17] WANG F,HOU W K,HU S J,et al. Modelling and analysis of metal transfer in gas metal arc welding[J]. Journal of Physics D:Applied Physics,2003,36(9):1143. [18] HU J,TSAI H L. Heat and mass transfer in gas metal arc welding. Part I:The arc[J]. International Journal of Heat & Mass Transfer,2007,50(50):833-846. [19] RAO Z H,HU J,LIAO S M,et al. Modeling of the transport phenomena in GMAW using argon-helium mixtures. Part I:The arc[J]. International Journal of Heat & Mass Transfer,2010,53(25-26):5707-5721. [20] XU G,HU J,TSAI H L. Three-dimensional modeling of arc plasma and metal transfer in gas metal arc welding[J]. International Journal of Heat and Mass Transfer,2009,52(7):1709-1724. [21] OGINO Y,HIRATA Y. Numerical simulation of metal transfer in argon gas-shielded GMAW[J]. Welding in the World,2015,59(4):465-473. [22] OGINO Y,HIRATA Y,MURPHY A B. Numerical simulation of GMAW process using Ar and an Ar-CO2,gas mixture[J]. Welding in the World,2016,60(2):345-353. [23] HERTEL M,ROSE S,FÜSSEL U. Numerical simulation of arc and droplet transfer in pulsed GMAW of mild steel in argon[J]. Welding in the World,2016,60(5):1055-1061. [24] HERTEL M,TRAUTMANN M,JÄCKEL S,et al. The role of metal vapour in gas metal arc welding and methods of combined experimental and numerical process analysis[J]. Plasma Chemistry & Plasma Processing,2017,37(3):531-547. [25] NGUYEN T C,WECKMAN D C,JOHNSON D A,et al. High speed fusion weld bead defects[J]. Science and Technology of Welding and Joining,2006,11(6):618-633. [26] WEI P S. Thermal science of weld bead defects:A review[J]. Journal of Heat Transfer,2011,133(3):031005. [27] SUDNIK V A. Research into fusion welding technologies based on physical-mathematical models[J]. Welding and Cutting,1991,10:588-590. [28] OHJI T,MIYASAKA F,YAMAMOTO T,et al. Mathematical model for MAG welding in a manufacturing environment[J]. Paton Welding Journal,2006,3(11):11-15. [29] MENG X,QIN G,BAI X,et al. Numerical analysis of undercut defect mechanism in high speed gas tungsten arc welding[J]. Journal of Materials Processing Technology,2016,236:225-234. [30] 陈姬,武传松. 高速GMAW驼峰焊道形成过程的数值分析[J]. 金属学报,2009,45(9):1070-1076. CHEN Ji,WU Chuansong. Numerical simulation of forming process of humping bead in high speed GMAW[J]. Acta Metallurgica Sinica,2009,45(9):1070-1076. [31] CHO M H,FARSON D F,DAVE F. Understanding bead hump formation in gas metal arc welding using a numerical simulation[J]. Metallurgical and Materials Transactions B,2007,38(2):305-319. [32] WU D,HUA X,YE D,et al. Understanding of humping formation and suppression mechanisms using the numerical simulation[J]. International Journal of Heat and Mass Transfer,2017,104:634-643. [33] XU G,CAO Q,HU Q,et al. Modelling of bead hump formation in high speed gas metal arc welding[J]. Science and Technology of Welding and Joining,2016,21(8):700-710. [34] MENG X,QIN G,ZOU Z. Investigation of humping defect in high speed gas tungsten arc welding by numerical modelling[J]. Materials & Design,2016,94:69-78. [35] MENG X,QIN G,ZOU Z. Sensitivity of driving forces on molten pool behavior and defect formation in high-speed gas tungsten arc welding[J]. International Journal of Heat and Mass Transfer,2017,107:1119-1128. [36] 武传松,王怀刚,张明贤. 小孔等离子弧焊接热场瞬时演变过程的数值分析[J]. 金属学报,2006,42(3):311-316. WU Chuansong,WANG Huaigang,ZHANG Mingxian. Numerical analysis of transient development of temperature field in keyhole plasma arc welding[J]. Acta Metallurgica Sinica,2006,42(3):311-316. [37] WU C S,HU Q X,GAO J Q. An adaptive heat source model for finite-element analysis of keyhole plasma arc welding[J]. Computational Materials Science,2009,46(1):167-172. [38] 霍玉双,武传松,陈茂爱. 等离子弧焊接小孔形状和穿孔过程的数值分析[J]. 金属学报,2011,47(6):706-712. HUO Yushuang,WU Chuansong,CHEN Maoai. Numerical simulation of keyhole shape and transformation from partial to open states in plasma arc welding[J]. Acta Metallurgica Sinica,2011,47(6):706-712. [39] SUN J H,WU C S,FENG Y H. Modeling the transient heat transfer for the controlled pulse key-holing process in plasma arc welding[J]. International Journal of Thermal Sciences,2011,50(9):1664-1671. [40] SUN J H,WU C S,CHEN M A. Numerical analysis of transient temperature field and keyhole geometry in controlled pulse key-holing plasma arc welding[J]. Numerical Heat Transfer Part A-Applications,2013,64(5):416-434. [41] LIU Z M,WU C S,CHEN J. Sensing dynamic keyhole behaviors in controlled-pulse keyholing plasma arc welding[J]. Welding Journal,2013,92(12):381-389. [42] 张晓宇,武传松. 考虑小孔后向偏移的等离子弧焊接热过程模型[J]. 机械工程学报,2015,51(14):66-71. ZHANG Xiaoyu,WU Chuansong. Thermal process model of plasma arc welding with considering the backside keyhole deviation[J]. Journal of Mechanical Engineering,2015,51(14):66-71. [43] FAN H G,KOVACEVIC R. Keyhole formation and collapse in plasma arc welding[J]. Journal of Physics D:Applied Physics,1999,32(22):2902-2909. [44] ZHANG T,WU C S,FENG Y H. Numerical analysis of heat transfer and fluid flow in keyhole plasma arc welding[J]. Numerical Heat Transfer Part a-Applications,2011,60(8):685-698. [45] WU C S,ZHENG W,CHEN M A. Improving the prediction accuracy of keyhole establishment time in plasma arc welding[J]. Numerical Heat Transfer Part a:Applications,2014,66(4):420-432. [46] LI T Q,WU C S. Numerical simulation of plasma arc welding with keyhole-dependent heat source and arc pressure distribution[J]. The International Journal of Advanced Manufacturing Technology,2015,78(1-4):593-602. [47] LI T Q,WU C S. An analytic formula describing the plasma arc pressure distribution[J]. China Welding,2014,23(2):7-11. [48] JIAN X,WU C S. Numerical analysis of the coupled arc-weld pool-keyhole behaviors in stationary plasma arc welding[J]. International Journal of Heat and Mass Transfer,2015,84:839-847. [49] PAN J,HU S,YANG L,et al. Numerical analysis of the heat transfer and material flow during keyhole plasma arc welding using a fully coupled tungsten-plasma-anode model[J]. Acta Materialia,2016,118:221-229. [50] 陈树君,徐斌,蒋凡. 变极性等离子弧焊电弧物理特性的数值模拟[J]. 金属学报,2017,53(5):631-640. CHEN Shujun,XU Bin,JIANG Fan. Numerical simulation of physical characteristics of variable polarity plasma arc welding[J]. Acta Metallurgica Sinica,2017,53(5):631-640. [51] 菅晓霞,武传松. Fe蒸气对等离子弧焊接熔池行为的影响[J]. 金属学报,2016,52(11):1467-1476. JIAN Xiaoxia,WU Chuansong. Influence of Fe vapor on weld pool behavior of plasma arc welding[J]. Acta Metallurgica Sinica,2016,52(11):1467-1476. [52] JIAN X X,WU C S,ZHANG G,et al. A unified 3D model for an interaction mechanism of the plasma arc,weld pool and keyhole in plasma arc welding[J]. Journal of Physics D:Applied Physics,2015,48(46):465504. [53] 李存洲. 激光深熔焊热场的数值模拟研究[D]. 北京:北京航空航天大学,2004. LI Cunzhou. Numerical study of thermal field in deep penetration laser welding[D]. Beijing:Beihang University,2004. [54] 陈军城,俞海良,芦凤桂,等. 高强钢激光穿透焊熔池温度场数值模拟[J]. 应用激光,2008,28(3):177-180. CHEN Juncheng,YU Hailiang,LU Fenggui,et al. Numerical simulation for temperature field in molten pool of deep penetration laser welding of high strength steel[J]. Applied Laser,2008,28(3):177-180. [55] 胥国祥,武传松,秦国梁,等. 激光+GMAW复合热源焊焊缝成形的数值模拟Ⅰ:表征激光作用的体积热源分布模式[J]. 金属学报,2008,44(4):478-482. XU Guoxiang,WU Chuansong,QIN Guoliang,et al. Numerical simulation of weld formation in laser+GMAW hybrid welding I:Volumetric distribution mode describing laser thermal action[J]. Acta Metallurgica Sinica,2008,44(4):478-482. [56] 胥国祥,武传松,秦国梁,等. 激光+GMAW复合热源焊焊缝成形的数值模拟Ⅱ:组合式体积热源的作用模型[J]. 金属学报,2008,44(6):641-646. XU Guoxiang,WU Chuansong,QIN Guoliang,et al. Numerical simulation of weld formation in laser+GMAW hybrid welding Ⅱ:Combined volumetric distribution model of hybrid welding heat source[J]. Acta Metallurgica Sinica,2008,44(6):641-646. [57] POSTACIOGLU N,KAPADIA P,DOWDEN J. A theoretical model of thermocapillary flows in laser welding[J]. Journal of Physics D:Applied Physics,1991,24(1):15-20. [58] GATZEN M,TANG Z,VOLLERTSEN F. Effect of electromagnetic stirring on the element distribution in laser beam welding of aluminium with filler wire[J]. Physics Procedia,2011,12:56-65. [59] KAPLAN A. A model of deep penetration laser welding based on calculation of the keyhole profile[J]. Journal of Physics D Applied Physics,1994,27(9):1805-1814. [60] 张转转,胥国祥,武传松. 基于小孔形状的TCS不锈钢激光+GMAW-P复合焊热场模型[J]. 金属学报,2011,47(11):1450-1458. ZHANG Zhuanzhuan,XU Guoxiang,WU Chuansong. Thermal field model for laser+GMAW-P hybrid welding of TCS stainless steel based on the predicted keyhole shape[J]. Acta Metallurgica Sinica,2011,47(11):1450-1458. [61] BACHMANN M,AVILOV V,GUMENYUK A,et al. Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel[J]. Journal of Materials Processing Technology,2014,214(3):578-591. [62] MATSUNAWA A. Problems and solutions in deep penetration laser welding[J]. Science and Technology of welding and Joining,2001,6(6):351-354. [63] AI Y,JIANG P,SHAO X,et al. A three-dimensional numerical simulation model for weld characteristics analysis in fiber laser keyhole welding[J]. International Journal of Heat & Mass Transfer,2017,108:614-626. [64] PANWISAWAS C,PERUMAL B,WARD R M,et al. Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys:Experimental and modeling[J]. Acta Materialia,2016,126:251-263. [65] CHO J H,NA S J. Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole[J]. Journal of Physics D Applied Physics,2006,39(24):5372. [66] DAL M,FABBRO R. An overview of the state of art in laser welding simulation[J]. Optics & Laser Technology,2016,78:2-14. [67] CHO W I,NA S J,THOMY C,et al. Numerical simulation of molten pool dynamics in high power disk laser welding[J]. Journal of Materials Processing Technology,2012,212(1):262-275. [68] HAN S W,AHN J,NA S J. A study on ray tracing method for CFD simulations of laser keyhole welding:Progressive search method[J]. Welding in the World,2016,60(2):247-258. [69] PANG S,CHEN L,ZHOU J,et al. A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding[J]. Journal of Physics D:Applied Physics,2010,44(2):025301. [70] PANG S,CHEN W,ZHOU J,et al. Self-consistent modeling of keyhole and weld pool dynamics in tandem dual beam laser welding of aluminum alloy[J]. Journal of Materials Processing Technology,2015,217:131-143. [71] PANG S,CHEN W,WANG W. A quantitative model of keyhole instability induced porosity in laser welding of titanium alloy[J]. Metallurgical and Materials Transactions A,2014,45(6):2808-2818. [72] TAN W,SHIN Y C. Analysis of multi-phase interaction and its effects on keyhole dynamics with a multi-physics numerical model[J]. Journal of Physics D:Applied Physics,2014,47(34):345501. [73] TAN W,BAILEY N S,SHIN Y C. Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation[J]. Journal of Physics D:Applied Physics,2013,46(5):055501. [74] PANG S,CHEN X,ZHOU J,et al. 3D transient multiphase model for keyhole,vapor plume,and weld pool dynamics in laser welding including the ambient pressure effect[J]. Optics and Lasers in Engineering,2015,74:47-58. [75] PANG S,SHAO X,LI W,et al. Dynamic characteristics and mechanisms of compressible metallic vapor plume behaviors in transient keyhole during deep penetration fiber laser welding[J]. Applied Physics A,2016,122(7):1-18. [76] PANG S Y,CHEN X,LI W,et al. Efficient multiple time scale method for modeling compressible vapor plume dynamics inside transient keyhole during fiber laser welding[J]. Optics & Laser Technology,2016,77:203-214. [77] ZHANG Z Z,WU C S. Effect of fluid flow in the weld pool on the numerical simulation accuracy of the thermal field in hybrid welding[J]. Journal of Manufacturing Processes,2015,20:215-223. [78] ZHOU J,TSAI H L. Modeling of transport phenomena in hybrid laser-MIG keyhole welding[J]. International Journal of Heat & Mass Transfer,2008,51(17-18):4353-4366. [79] CHO W I,NA S J,CHO M H,et al. Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding[J]. Computational Materials Science,2010,49(4):792-800. [80] CHO J H,NA S J. Three-dimensional analysis of molten pool in GMA-laser hybrid welding[J]. Welding Journal,2009,88(2):35-43. [81] WU C S,ZHANG H T,CHEN J. Numerical simulation of keyhole behaviors and fluid dynamics in laser-gas metal arc hybrid welding of ferrite stainless steel plate[J]. Journal of Manufacturing Processes,2017,25:235-245. |
[1] | 郑洋, 赵梓昊, 刘伟, 余政哲, 牛伟, 雷贻文, 孙荣禄. 高性能镁合金增材制造技术研究进展[J]. 机械工程学报, 2024, 60(7): 385-400. |
[2] | 杜军, 王谦元, 何冀淼, 张永恒, 魏正英. TIG电弧辅助熔滴沉积增材制造中熔滴偏距对熔池形貌的影响机制研究[J]. 机械工程学报, 2024, 60(5): 219-230. |
[3] | 胡龙, 刘红艳, 成慧梅, 陈维奇, 冯广杰, 叶延洪, 邓德安. 超高强耐磨钢NM500多层多道对接接头残余应力的研究[J]. 机械工程学报, 2024, 60(4): 335-344. |
[4] | 宋军, 唐倩, 罗智超, 冯琪翔, 聂云飞, 任治好. 马氏体时效钢激光选区熔化成形过程介观尺度数值模拟[J]. 机械工程学报, 2024, 60(3): 282-295. |
[5] | 胡成亮, 苗宏量, 曾凡, 赵震, 汤敏俊, 汤晓峰. 热成形条件下软磁材料的磁感应强度预测模型[J]. 机械工程学报, 2024, 60(2): 132-139,149. |
[6] | 樊丁, 李德全, 侯英杰, 黄健康, 冯 毅. GMAW潜弧焊电弧-熔池耦合行为数值分析[J]. 机械工程学报, 2024, 60(2): 159-167. |
[7] | 王刚, 谷诤巍, 于歌, 李欣. 热成形工艺条件下7075-H18铝合金板材塑性流动行为的本构建模[J]. 机械工程学报, 2024, 60(2): 188-196. |
[8] | 戴志远, 李田, 张卫华, 张继业. 不同海拔高度环境下高速列车气动特性研究[J]. 机械工程学报, 2024, 60(16): 291-305. |
[9] | 陈佳佳, 刘松炎, 杨勇, 袁冬冬, 张立勇, 傅玉灿, 钱宁. 纳米流体热管砂轮成型磨削钛合金换热性能评价[J]. 机械工程学报, 2024, 60(15): 407-419. |
[10] | 傅德彬, 李超艳, 陈四春, 徐晓明. 密闭空间内射流冲击波传递特性[J]. 机械工程学报, 2024, 60(14): 338-346. |
[11] | 童哲铭, 马鑫航. 基于孪生支持向量回归的多级离心泵外特性曲线预测及设计方法[J]. 机械工程学报, 2024, 60(14): 364-377. |
[12] | 田文卿, 蔡超, 郭瑞鹏, 史玉升. 热等静压近净成形数值模拟研究现状与展望[J]. 机械工程学报, 2024, 60(1): 13-26. |
[13] | 于正洋, 钟斌, 张传伟, 赵升吨. 304不锈钢棒料连续旋弯低应力精密下料断裂预测[J]. 机械工程学报, 2024, 60(1): 190-197. |
[14] | 陈鑫, 王佳宁, 杨立飞, 张冠宸. 6061-T6铝合金薄板剪切试件设计及动态剪切力学特性分析[J]. 机械工程学报, 2023, 59(4): 62-70. |
[15] | 孙瑶, 蔡路, 秦登, 李田, 张继业. 车窗开闭状态对双层列车车厢内火灾烟气特性的影响[J]. 机械工程学报, 2023, 59(4): 232-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||